Temporal Requirement for the Protective Effect of Dietary Cholesterol against Alcohol-Induced Vasoconstriction

Author(s): Olga Seleverstov, Kelsey North, Maria Simakova, Shivantika Bisen, Alexandra Bickenbach, Zoran Bursac, Alex M. Dopico and Anna N. Bukiya*

Abstract

Moderate-to-heavy episodic alcohol drinking resulting in 30-80 mM of ethanol in blood constricts cerebral arteries and constitutes a risk factor for cerebrovascular disease. Alcohol-induced constriction of cerebral arteries in vivo and ex vivo has been shown to be blunted by dietary cholesterol (CLR) in a rat model of a high-CLR diet. Such protection has been proposed to arise from the high-CLR diet-driven increase in blood CLR levels and accompanying buildup of CLR within the cerebral artery smooth muscle. Here we used a rat model of high-CLR feeding in vivo and pressurized cerebral arteries ex vivo to examine whether the degree and time-course of alcohol-induced constriction are related to blood CLR levels. We demonstrate that subjecting young (3 weeks-old, 50 g) male Sprague-Dawley rats to a high- CLR feeding up to 41 weeks, resulted in an age-dependent increase in total blood CLR levels, when compared to those of age-matched rats on isocaloric (control) chow. This increase was paralleled by a high-CLR diet-driven elevation of blood low-density lipoproteins whereas high-density lipoprotein levels matched those of age-matched, chow-fed controls. Alcohol-induced constriction was only blunted by high-CLR dietary intake when high-CLR chow was taken for up to 8-12 and 18-23 weeks. However, alcohol-constriciton was not blunted when high-CLR chow intake lasted for longer times, such as 28-32 and 38-41 weeks. Thus, alcohol-induced constriction of rat middle cerebral arteries did not critically depend on the total blood CLR levels. Alcohol-induced constriction seemed unrelated to the natural, progressive elevation of the total blood CLR level in control- or high-CLR-fed animals over time. Thus, neither the exogenously nor endogenously driven increases in blood CLR could predict cerebral artery susceptibility to alcoholinduced constriction. However, we identified a temporal requirement for the protective effect of dietary CLR against alcohol, that could be governed by the young age of the high- CLR chow recipients (3 weeks of age) and/or the short duration of high-CLR chow feeding lasting for up to 23 weeks.

Share this article