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Abstract

Obesity has become a global epidemic, affecting approximately one-
third of the world’s population and serving as a primary risk factor for 
Type 2 Diabetes (T2D) and related metabolic disorders. This review 
examines the intricate relationship between obesity, inflammation, and 
insulin resistance, highlighting White Adipose Tissue (WAT) as a crucial 
player in this process. Elevated body fat triggers a low-grade, chronic in-
flammatory response characterized by the recruitment and activation of 
pro-inflammatory macrophages, leading to the release of cytokines like 
TNF-α and IL-6, which disrupt insulin signaling and promote systemic 
inflammation. We explore the role of various immune cells in adipose 
tissue, the phenotypic switching of macrophages from anti-inflamma-
tory to pro-inflammatory states, and the resultant impact on metabolic 
health. Additionally, we discuss emerging therapeutic strategies tar-
geting inflammatory pathways as potential interventions for managing 
obesity-related conditions. These include pharmacologic agents like sal-
salate, TNF-α inhibitors, IL-1β antagonists, and anti-inflammatory prop-
erties of established diabetes medications such as thiazolidinediones and 
metformin. By elucidating the mechanisms underlying obesity-induced 
inflammation and its effects on glucose metabolism, this review aims to 
inform future research and clinical approaches to mitigate obesity and its 
associated metabolic complications.
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Introduction

Excess weight and fatness are the result of a persistent 
disturbance between energy consumption and discharge, 
leading to the deposition of fat in AT. About one third of 
the habitancy of our world suffers from excess weight or 
fatness which means that the global sickness rate has in-
creased since 1980 [1,2].

Heaviness is a composite state including genetic and living 
constituents and corresponds to a few morbid disturbances 

leading to significant consequences for personal and public 
health. Changing of habits and a standard of living (e.g., 
enhanced sports activity and reduced fattening consump-
tion) are the basic for the check of weight [3,4]. The en-
hancement of β-cell features and insulin susceptibility in 
Adipose Tissue, liver, and skeletal muscle can happen af-
ter slow reduction of weight reaching 16% from the initial 
body weight [5-7]. Glycemic control is better after the re-
duction of weight because of uncontrolled transformation 
genetic information in protein switched in cholesterol flux, 
lipid synthesis, ECM remodeling, and oxidative stress. Tak-
ing into consideration the information above, fatness is the 
widest spread endocrine disease in the world and an initial 
trigger for IR and diabetes mellitus [8-11].  

According to American Diabetes Association diabetes mel-
litus is in a cluster of illnesses in which sugar is not as-
similated properly. The sickness rate of diabetes mellitus 
deceased has grown significantly for the last three decades 
so that it has become the main cause of death in the world. 
T2D is supposed to be a sequela of fatness in 2025 for more 
than 300 million people [12,13].

Persistent illness with a high rate of glucose because of in-
sufficient insulin generation (i.e., β-cell disturbance) and IR 
(no cell reaction on insulin) is T2D. It is a dominant form of 
diabetes mellitus [14-17].

Fatness is one of the conditions for IR appearance and the 
full insight into linkage obesity and IR will improve our 
impression of T2D etiology and help us better treat fat-
ness-related conditions A few studies have been done on 
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people and genetically modified animals, showing a link 
between overeating and the activation of both the inborn 
and adaptive immune systems in body parts that regulate 
overall energy balance in the body [18-20].

The first evidence suggesting that inflammation is linked 
to obesity and diabetes comes from studies on humans and 
animals in the early 1990s. These studies showed that fat 
tissue in obese rodents and humans undergoes inflamma-
tory changes and releases more of the pro-inflammatory 
molecule TNF-α, which can cause insulin resistance by 
immobilization of IRS-1 [21-24]. The key role of TNF-α 
is considerably supported by findings that blocking TNF-α 
in obese mice enhances insulin sensitivity and glucose me-
tabolism. Weak persistent inflammation in fat tissue, also 
known as meta-inflammation, is closely linked to а surplus 
body fat. This condition is marked by the presence and ac-
tivation of pro-inflammatory macrophages and other im-
mune cells, which generate and release pro-inflammatory 
cytokines and chemokines [25-27].

In the course of obesity not only does the quantity of mac-
rophages in fat tissue grow (achieve 40% of all cells in fat 
tissue), but their position and inflammatory behavior also 
change. In people of normal weight, macrophages have an-
ti-inflammatory properties [28]. However, in obese individ-
uals, these macrophages (called AT macrophages or ATMs) 
move to a pro-inflammatory state. In obesity, macrophages 
cluster around dead fat cells, forming structures known as 
crown-like structures, and release pro-inflammatory cyto-
kines. This contributes to both local and systemic inflam-
mation and insulin resistance [29-31].

The exact triggers of inflammation are still largely un-
known, but changes in fat tissue caused by obesity, such 
as fat cell death, lack of oxygen, and mechanical stress, 
can start an inflammatory response. Because inflammation 
plays a key role in the development of T2D and its related 
metabolic problems, there is an increasing interest in tar-
geting inflammatory pathways or molecules to impede and 
cure the disease [32,33].

In this study, we focus on how the loss of immune regula-
tion contributes to inflammation in fat tissue and the devel-
opment of obesity-related disorders, with an emphasis on 
the molecular details. We discuss the cellular and molecular 
factors that trigger inflammation due to obesity and provide 
an overview of new anti-inflammatory treatment strategies.
The inflammatory phenotype of white adipose tissue

WAT primarily stores fat and acts as a major endocrine or-
gan that releases signaling molecules called adipokines and 
cytokines into the bloodstream. Adipokines play key roles 
in regulating various metabolic processes, including insulin 
signaling, glucose uptake, and fatty acid oxidation. Cyto-
kines manage inflammation and support tissue repair and 
blood vessel formation [34,35].

When a person gains weight and becomes obese, WAT un-
dergoes changes that include the development of inflamed, 
dysfunctional fat cells and an increase in immune cells in 
the tissue. These inflamed fat cells release proinflammatory 

cytokines, which can break up both the normal function of 
WAT and affect other organs in the body [36,37]. In this 
context, WAT can be seen as both an immune and secretory 
organ, and obesity can be viewed as an inflammatory im-
mune condition [38,39].

Researches of either animals or humans have confirmed 
that increased body fat and inflammation in adipose tissue 
are linked to a surplus calorie consumption. The research 
by Lee, et al. used immunocompromised mice to show that 
inflammation plays a crucial role in developing insulin re-
sistance from a long-term Western-style diet. One notable 
aspect of the inflammation in expanding WAT is its per-
sistent, low-grade nature, which is not possible to be re-
solved and is referred to as “metaflammation” [40-42].

Inflammation generally wastes energy, increasing energy 
outgo and decreasing energy consumption through straight 
and devious methods. Directly, inflammatory cytokines 
like TNFα, IL-1, and IL-6 provide energy expenditure by 
interacting with receptors in the central nervous system and 
metabolic organs. These cytokines have effects similar to 
leptin, a hormone that promotes energy outgo [43-45].

Leptin production increases in adipose tissue during in-
flammation, triggered by hypoxia and inflammatory sig-
nals. Additionally, TNFα boosts leptin receptor expression, 
enhancing leptin’s role in increasing energy expenditure 
and reducing appetite. Thus, leptin contributes to higher 
energy expenditure indirectly through its effects on appetite 
and metabolism [46-49].

Interestingly, the inflammation in adipose tissue caused 
by overnutrition does not lead to a significant increase in 
energy expenditure. This allows inflammation and weight 
gain to coexist in obese individuals. Despite this, the in-
flammatory response in adipose tissue shares similarities 
with traditional inflammation [50,51]. It involves the in-
filtration of immune cells from the bone marrow and the 
release of inflammatory mediators, such as chemokines and 
cytokines, by both adipocytes and resident immune cells. 
Additionally, even in people who are otherwise healthy and 
normal-weight, inflamed adipose tissue can trigger wide-
spread systemic inflammation through the release of cyto-
kines [52,53].

Due to its location and structure, white adipose tissue WAT 
exhibits various inflammatory profiles. Research shows 
that obesity causes a more severe inflammatory response 
in visceral WAT Visceral Fat (VAT) compared to Subcu-
taneous WAT (SAT). VAT in obese individuals has more 
macrophages and greater adipocyte hypertrophy than SAT 
[54-56]. Additionally, inflammation in VAT is linked to 
lower expression of lipogenic markers, likely because more 
cells adopt an inflammatory rather than a lipid storage role. 
This shift contributes to metabolic issues, including abnor-
mal fat accumulation in the liver and muscles. Since fat 
buildup in the wrong places reduces the body’s ability to 
use insulin, inflammation in VAT is believed to greatly in-
fluence obesity-related problems like insulin resistance and 
Type 2 diabetes [57,58]. Although research suggests VAT 
inflammation is a major factor, many studies also high-
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light the role of inflammation in subcutaneous fat SAT in 
metabolic issues. The debate over how different fat types 
contribute to inflammation has been partly studied in mice. 
To understand how VAT and SAT affect metabolism differ-
ently, Rytka, et al. [59] increased fat mass in mice by trans-
planting epididymal VAT into areas draining into the caval 
or portal systems [60,61]. The procedure caused inflamma-
tion in Adipose Tissue (AT) in both groups of transplanted 
mice. However, only the mice with fat transplanted into the 
mesenterium had higher levels of IL-6 and Free Fatty Ac-
ids (FFA) in the portal vein and showed impaired glucose 
tolerance. Human studies further confirm that VAT and SAT 
metabolize differently [62,63]. For the same amount of AT, 
VAT takes up more meal FFA than SAT in both men and 
women. Additionally, omental fat (a type of VAT) takes up 
more plasma FFA compared to abdominal subcutaneous fat 
in women. This suggests that VAT’s location and structure 
allow it to more directly affect important organs, like the 
liver, which are crucial for regulating insulin and overall 
metabolism [64,65].
What is the role of inflammation? What is the role of 
macrophages? Are they central mediators of obesity-in-
duced adipose tissue inflammation and insulin resis-
tance?

In obesity, expanded AT produces high levels of proinflam-
matory cytokines, which activate the IKKβ/NFκB and JNK 
pathways. This leads to insulin resistance in both fat cells 
and liver cells. The inflammatory response in AT is key to 
obesity-related insulin resistance, with various immune 
cells in AT playing roles in regulating inflammation and in-
sulin resistance. While adipocytes (fat cells) are important 
for managing inflammation and tissue remodeling through 
cytokine release and antigen presentation, evidence also 
highlights the critical role of macrophages in these process-
es [66-69].

Macrophages are immune cells found in AT that have a 
versatile role. They help with removing dead cells, remod-
eling the extracellular matrix, regulating blood vessel for-
mation, and maintaining AT balance. In obesity, there is an 
increased influx of monocytes and macrophages into AT. In 
lean human visceral AT, macrophages make up about 10% 
of the stromal vascular cells, but this proportion rises to 
about 40% in obese individuals [70-72].

A model called “phenotypic switching” of macrophages in 
AT during obesity has been suggested. In this model, mac-
rophages shift from an anti-inflammatory state (M2 macro-
phages) to a proinflammatory state (M1 macrophages). M2 
macrophages, which are induced by Th2 cytokines like IL-
4, IL-10, and IL-13, are common in lean AT and play a role 
in maintaining normal adipocyte function by promoting tis-
sue repair and angiogenesis [73-75]. They express high lev-
els of arginase-1, which inhibits nitric oxide synthase activ-
ity, and secrete anti-inflammatory cytokines such as IL-10. 
However, in obesity, M1 macrophages, which are activated 
by signals like Lipopolysaccharide (LPS) and Th1 cytokine 
IFN-γ, become more dominant. These M1 macrophages 

produce proinflammatory factors such as TNF-α and IL-6 
and are associated with increased insulin resistance. Initial-
ly, the “phenotypic switching” model of macrophages in 
AT during obesity was helpful [76-78]. However, as our 
understanding of macrophage activation has grown, this 
model’s accuracy in living organisms has been questioned. 
It is now clear that macrophages in obesity are highly 
adaptable, with their characteristics depending on the spe-
cific stimuli they encounter. The exact roles and numbers of 
these macrophages in obese AT are still being studied, and 
the mechanisms behind their unique activation states are 
not fully understood [79-81]. What is evident, though, is 
that more than one type of macrophage exists in obese AT. 
These macrophages may not fit neatly into the M1 or M2 
categories but instead show a state of “Metabolic Activa-
tion” (MMe), driven by various metabolic stimuli like free 
fatty acids, high insulin, and high glucose levels [82-84]. 
Transformations in the microenvironment and inflammato-
ry state cause macrophages to infiltrate tissues and adopt a 
metabolic activation state, a process known as macrophage 
polarization. This involves the induction of proteins related 
to lipid metabolism, enabling these macrophages to man-
age excessive lipids in their environment [85-87]. These 
recruited macrophages vary from resident macrophages in 
their allocation, gene expression, and function. Proteomic 
analysis of MM1, MM2, and metabolically activated mac-
rophages (MMe) has shown that MMe cells have clear sur-
face markers. Specifically, MMe macrophages overexpress 
proteins such as ABCA1, CD36, and PLIN2, all of which 
play crucial roles in lipid metabolism [88-90].

The penetration of macrophages into expanding AT may 
play a crucial role in triggering inflammation in obesity and 
causing insulin resistance. These macrophages are thought 
to create conditions that allow the negative effects of AT 
expansion to occur. However, other research suggests that 
inflammation in adipose tissue might actually be a result of 
insulin resistance, rather than the cause of it [91,92].
Inflammation as a therapeutic target for metabolic dis-
eases

Chronic inflammation, especially in AT, is now recognized 
as a key factor in the development of T2D and its related 
complications. The link between obesity, AT inflammation, 
and metabolic diseases has made targeting inflammatory 
pathways an attractive strategy for treating these conditions 
[5,25]. Inflammation is seen as a central cause of these 
common health issues. Although a few anti-inflammato-
ry treatments have been tested in obese individuals with 
Insulin Resistance (IR), more clinical trials are needed to 
confirm their effectiveness. The amount of drugs available 
that target various parts of the immune system and improve 
different aspects of metabolism is growing rapidly [93-95].

Therapeutic approaches to targeting inflammation in IR and 
T2D can be categorized basing on their mechanism of ac-
tion into two main groups: (i) pharmacologic approaches that 
directly target inflammation, and (ii) diabetes drugs that also 
possess anti-inflammatory properties [96-98] (Table 1).
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mice, a human clinical trial found that anti-TNF-α thera-
py did not improve insulin sensitivity in T2D patients. On 
the other hand, a study on obese individuals without T2D 
showed that inhibiting TNF-α for 6 months could lower 
fasting glucose and increase adiponectin levels [107,108].
IL-1β antagonists

IL-1β is a key driver of obesity-related inflammation and 
plays a role in the development of T2D by contributing to the 
harmful effects of high blood sugar on pancreatic β-cells. In 
a proof-of-concept study, blocking the IL-1 Receptor (IL-
1R) for 13 weeks in T2D patients led to improved blood 
sugar control, better pancreatic β-cell function, and reduced 
markers of systemic inflammation [109,110]. A follow-up 
study on the same group showed that even 39 weeks after 
the last IL-1R antagonist dose, β-cell insulin secretion re-
mained elevated and C-Reactive Protein (CRP) levels were 
still lower. These long-term effects are likely due to the 
blocking of IL-1β’s self-reinforcing mechanism. Addition-
al studies have also suggested that using antibodies against 
IL-1β could be beneficial in treating T2D, as it significantly 
lowers HbA1c levels [111]. Pathological activation of IL-
1β also plays a role in the development of other diseases 
associated with T2D, such as Crohn’s disease, gout, and 
Rheumatoid Arthritis (RA). Recently, a multicenter ran-
domized controlled trial was conducted to specifically 
evaluate the effects on blood sugar control in participants 
with both RA and T2D over a 6-month period [112,113]. 
Thirty-nine participants were randomized to receive either 
an IL-1 receptor antagonist (anakinra) or TNF inhibitors 
(TNFi) to compare the effectiveness of these treatments in 
managing blood sugar levels in T2D. After 3 and 6 months 
of treatment, anakinra led to a significant progress in met-
abolic outcomes, with a reduction in HbA1c by more than 
1%, while TNF inhibitors did not show any improvement 
[114,115]. Both groups experienced a gradual reduction in 
RA disease activity. In conclusion, the results of this study 
highlight the specific effectiveness of IL-1 inhibition in pa-
tients with both RA and T2D, achieving therapeutic targets 
for both conditions and improving the primary outcomes 
for participants. The more pronounced reduction in HbA1c, 
compared to previous studies on T2D alone, may be due 
to the theory that the pathogenic mechanisms of T2D are 

Salsalate

Salsalate is a derivative of salicylate and is part of the 
Non-Steroidal Anti-Inflammatory Drug (NSAID) class. 
Research has shown that salsalate can help improve blood 
sugar control in patients with T2D. The mechanism by 
which salsalate reverses hyperglycemia in obese mice in-
volves the inhibition of the NF-κB pathway, a discovery 
made by Shoelson and colleagues in 2001 [99,100]. 

Goldfine expanded on the initial findings by conducting 
clinical studies that showed salsalate can lower fasting glu-
cose and triglyceride levels, increase adiponectin levels, 
enhance glucose utilization during hyperinsulinemic-eug-
lycemic clamps, and improve insulin clearance in diabetic 
patients. These results were verified in two interdisciplin-
ary, randomized, placebo-controlled trials involving pa-
tients with T2D [101].

In the first study, salsalate treatment improved insulin sen-
sitivity and reduced HbA1c levels by 0.5% compared to 
placebo over 14 weeks. The second study, which lasted 48 
weeks and involved 283 participants (with 146 receiving 
salsalate and 137 receiving placebo), found a smaller re-
duction in HbA1c levels (–0.33%) and serum triglycerides 
with salsalate treatment. Additionally, salsalate treatment 
was associated with reduced levels of glycation end prod-
ucts [99-101].

Other studies also indicate that the metabolic improvements 
from salsalate treatment are due to the activation of AMPK. 
While its impact on blood sugar control is modest, salsalate 
is affordable and has a strong safety profile [102,103].
TNF-α inhibitors

In 1993, a preclinical study demonstrated the role of TNF-α 
in the development of insulin resistance in adipose tissue. 
This led to the hypothesis that blocking TNF-α could have 
therapeutic benefits [104]. However, clinical study results 
have been disappointing. Although TNF-α neutralizing an-
tibodies are effective for treating many other inflammatory 
diseases and have shown slight improvements in blood sug-
ar control in some patients, results in patients with T2D have 
been inconclusive [105,106]. Despite promising effects in 

Table 1: Therapeutic strategies targeting inflammation in obesity.

Therapeutic approach Mechanism of action Clinical evidence

Salsalate Inhibits NF-κB pathway Improves insulin sensitivity; lowers HbA1c in T2D

TNF-α Inhibitors Neutralizes TNF-α Mixed results in T2D; lowers fasting glucose in non-T2D

IL-1β Antagonists Blocks IL-1 receptor Improved blood sugar control; beneficial in RA+T2D

Thiazolidinediones (TZDs) PPARγ agonists, anti-inflammatory effects Reduces AT macrophages, enhances insulin sensitivity

Metformin Reduces liver glucose production, inhibits inflammatory 
cytokines Lowers CRP levels; improves metabolic outcomes
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[129,130]. Metformin also reduces circulating inflammato-
ry proteins, such as CRP, in patients with impaired glucose 
tolerance and type 2 diabetes. Its anti-inflammatory effects, 
similar to those of TZDs, seem to be independent of glyce-
mic control. In animal models, reducing inflammation has 
been effective in improving obesity-induced insulin resis-
tance. However, ongoing clinical trials are needed to con-
firm the therapeutic potential of metformin in humans. This 
step is crucial for establishing the translational relevance of 
these findings [131,132].

T2D is a heterogeneous disease, and the lack of clinical 
biomarkers indicating whether treatments have anti-inflam-
matory effects in adipose tissue complicates the analysis. 
Identifying and profiling these biomarkers in T2D patients 
would help predict which individuals are most likely to 
benefit from anti-inflammatory therapies [133-135].

Conclusion

In summary, the surge in obesity prevalence worldwide is 
intricately linked to the development of insulin resistance 
and type 2 diabetes, with chronic inflammation in adipose 
tissue serving as a pivotal mechanism behind this associa-
tion. The transition of macrophages within white adipose 
tissue from anti-inflammatory to pro-inflammatory states 
exacerbates metabolic dysregulation, highlighting the role 
of immune dysregulation in the pathology of obesity. Ad-
dressing the inflammatory processes associated with obesi-
ty presents a promising avenue for therapeutic intervention. 
Emerging strategies, including the targeting of specific in-
flammatory pathways and the use of existing diabetes med-
ications with anti-inflammatory properties, offer hope for 
improving metabolic outcomes in obese individuals. Future 
research should focus on elucidating the complex interac-
tions between immune responses and metabolic health, 
as well as identifying biomarkers that predict response to 
anti-inflammatory therapies. By advancing our understand-
ing of these relationships, we can develop more effective 
treatments to combat obesity and its extensive health con-
sequences.
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