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The Impact of Addictive Drugs on HIV Immunopathogenesis
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insight into the mechanisms underlying HIV and neu-
rocognitive disorders comorbidity.

Introduction

HIV-Associated Neurocognitive Disorder (HAND) per-
sists in people living with HIV infection (PLWH) despite 
viral suppression by ART [1-4]. Brain abnormalities are 
observed in 30%-50% of PLWH and are known to be driv-
en partly by systemic neuroinflammation [5-11]. In PLWH, 
impaired amygdala responses were associated with in-
creased neurocognitive symptoms such as depression, anx-
iety, and reduced emotional awareness. Reduced putamen 
size was associated with impaired motor function in HIV.

The most commonly abused addictive drugs by HIV-infect-
ed individuals include cannabis,

Cocaine, morphine, methamphetamine, heroin, and am-
phetamine. The use of addictive drugs is associated with 
increased incidence of HIV infection, neurocognitive dis-
orders, HIV replication, morbidity and mortality compared 
to non-HIV drug users and HIV-infected non users [1-4]. 
Currently, most patients in the US receive viral suppres-
sive Antiretroviral Therapy (ART) treatment to suppress 
viral replication and control disease progression. However, 
Substance Use Disorders (SUD) in HIV patients could be 
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a main factor underlying low adherence to ART treatment, 
uncontrolled viremia, and increased chronic inflammation 

Thus, HIV infected individuals with comorbid addictive 
drug use disorders may characterize a distinct subgroup of 
patients who will suffer a more severe clinical course [9-
13]. To date, extensive studies have been done to under-
stand high incidence of HIV Associated

Neurologic Disorders (HAND) in HIV disease, but the ex-
act mechanisms are not completely understood, especially 
of long term ART and viral suppression settings.

The Impact of Addictive Drug on HIV Viral Replica-
tion

It is challenging to study the impact of addictive drugs 
on immune perturbations in HIV as several confounding 
factors are involved (e.g., ART treatment adherence and 
viral replication levels). ART treatment adherence and 
viral replication levels are often related to addictive drug 
abuse, suggesting a mechanism of addictive drug mediat-
ed immune perturbations and faster disease progression in 
HIV [14,15]. Moreover, factors including single or multi-
ple drug use, duration of drug use, and route of drug use 
contribute to drug associated disease progression. Previous 
studies showed that both substance abuse and heightened 

cell recovery under ART in HIV disease; and drug use asso-
ciated low adherence to ART treatment and loss of virology 
control mainly account for poor immune reconstitution in 
these patients [16-20]. Nevertheless, previous studies show 
that treatment of cocaine, cannabis, or opiates impacts HIV 
viral replication using animal models or using human cells 
in vitro [21-23]. Notably, treatment with 200 mg/L-1000 

-

cell recovery and uncontrolled HIV replication [24]. In ad-
dition, increased susceptibility to HIV infection and HIV 
reservoir have been observed in cultured brain cells treated 
with cocaine [25,26]. Thus, SUD is associated with loss of 
viral control, accelerated disease transmission and progres-
sion, mortality, and morbidity.

The Impact of Addictive Drug on Systemic Immunities 
in HIV Disease

It is critical to study the impact of addictive drugs on sys-
temic immune perturbations in HIV disease under viral 
suppressive ART treatment. Previous investigations have 
shown that HIV-infected patients with SUD have poor 

and mortality [6,27]. Monocyte and macrophage activation 
play a key role in persistent immune activation and inflam-
mation, as well as increased incidence of cardiovascular 
diseases in HIV and neuro HIV infection [28-31]. Soluble 
CD163 and CD14 can be produced by monocytes in re-
sponse to LPS stimulation [7,8,32-37]. SUD is associated 
with increased plasma levels of soluble CD163 and CD14, 
suggesting cell activation and oxidative stress of monocytes 
or macrophages [32-35]. Studies from Brenchley group and 

our group show that HIV/SIV infection results in intestinal 
barrier impairment, systemic bacterial product transloca-
tion, and as a consequences of cell activation, apoptosis 
and persistent inflammation [38-41]. HIV has been report-
ed to have a direct effect on epithelial cells; HIV Tat and 
gp120 proteins decrease tight junction (claudin 1, 2, 4, oc-
cludin and ZO-1) protein expression using human primary 
cells and cell lines in vitro [42,43].

The activation of monocytes or macrophages may result 
from increased gut permeability and microbial transloca-
tion in drug users in HIV disease. Some factors have the 
potential to affect the microbial translocation and cell ac-
tivation, the route of drug use and microbiome. Ingestion 
of drug most likely affects the intestinal tract; inhalation 
of drug most likely affects lung and respiratory tract; and 
vascular injection of drug most likely affects the whole 
system. The translocated bacterial products may also play 
a role in cell activation, as some inflammatory strain of 
bacterial products may promote heightened inflammation 
and non-inflammatory or commensal strain of bacterial 
products may inhibit inflammation. Nonetheless, the exact 

-
cline, persistent immune activation and inflammation even 
in HIV-infected patients with long term viral suppressive 
ART treatment remain unclear.

The Impact of Addictive Drug on Neuro-impairment 
in HIV Disease

There are about one third of ART-treated HIV-infected 
patients who exhibit HAND under viral suppressive ART 
treatment [44]. This may occur via alteration of blood brain 
barrier by addictive drugs abuse allowing faster replication 
of HIV virus infection in the brain [45]. Cocaine has been 
shown to induce macrophage and microglia activation di-
rectly, resulting in neuro-inflammation and neurotoxicity 
and uncontrolled HIV viral replication [46,47]. Moreover, 
increased intestinal and blood brain barrier permeability 
has been reported in cells or animals after treatment with 
cocaine, opioid, and morphine [48]. However, decreased 
blood brain barrier permeability has been reported in rat 
models after treatment with cannabis [49]. Because of 
permeable barriers, microbial translocation promotes cell 
activation, migration and induce pro-inflammatory cyto-
kine (e.g., TNF-α) production, resulting in the activation 
of microglia, astrocytes, and perivascular macrophages 
and neuroinflammation. Furthermore, the cytokines and 
chemokines (e.g., IL-6, MCP-1, MIP-1) produced by 
these activated CNS cells recruit circulating lymphocytes 
to CNS and induce in neuronal injury [50]. Importantly, 
microbial TLR-related proinflammatory cytokines such as 
IL-17a, IL-10, IL-6, IL-8, TNF-α, IP-10, MIP-α, and IL-
12/IL-23p40 are increased in the CNS in patients with neu-
ro-cognitive impairment [44,51]. These cytokines can be 
produced by microglia and astrocyte activation in response 
to TLR4 ligation and are associated with HIV HAND with-
out being further stratified by use of a particular drug [52-
56]. Moreover, plasma levels of soluble CD163 and CD14 
are associated with neurocognitive disorders in HIV diseas-

may account for blunted CD4+  T cell reconstitution [5-8]. 

mechanisms on how drug abuse mediated CD4+  T cell de
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es, another evidence of monocyte activation in response to 
bacterial products [57-59]. These lines of evidence strongly 
suggest that the host defense to foreign antigens may play 
a double edged role: They are essential to control invading 
pathogens, but the perturbed systemic or CNS immune re-
sponses could be harmful.

Associated brain cell markers such as Neurofilament Light 
chain protein (NFL) in Cerebrospinal Fluid (CSF) has been 
shown association with neuronal injury in HIV patients es-
pecially with dementia [44]. In ART naïve patients, plasma 
level of NFL is directly associated with CSF NFL level, 
indicating a potential non-invasive biomarker for HAND in 
HIV [44]. In addition, S100B is a calcium binding protein 
in astrocytes and may associate with neurodegeneration; 
quinolinic acid, a neuroexcitotoxic metabolite of L-trypto-
phan, has been found to increase in HAND HIV patients 
[44,60]. Increased inflammation and acute phase proteins 
Creative Protein (CRP) and amyloid A (SAA) is associated 
with HIV patients with cocaine abuse and increased neu-
ro-inflammation [61].

Neuro-HIV Animal Models

Neuro-HIV animal models have been critical for investi-
gating causality and mechanisms of neuro-HIV disease 
pathogenesis, evaluating novel therapies along with the 
interaction of virus with neuroimmune responses and be-
havior [47,62-64]. Potential confounding factors can be 
evaluated using animal models including food, gene, en-
vironmental, and socio economic factors. HAND includes 
HIV-Associated Dementia (HAD) Asymptomatic Neuro-
cognitive Impairment (ANI) and Milder Neurocognitive 
Disorder (MND) [65]. HAD exhibits irreversible neuronal 
impairment and neurodysfunction; whereas ANI and MND 
may have reversible physiological and neurodisorders [66]. 
The incidence of HAD is significantly decreased after in-
troduction of ART treatment, and ANI and MND are the 
most prevalent neurodisorders in ART treated HIV disease 
[65,66]. Notably, there are about 50% HIV-infected popula-
tion who have HAND despite ART treatment. HIV-infected 
patients with HAND exhibit mild learning and/or memo-
ry disturbances, consistent with data from HAND animal 
models [47, 62-67]. Therefore, HAND animal models can 
help to evaluate behavioral performance similar to neuro-
cognitive disorders in HIV patients. Furthermore, neuro 
histopathological parameters may not present in ANI and 
MND, which rely on both neuropathological parameters 
and behavioral assessments. It is important to have a win-
dow of plasticity when animal models are used to evaluate 
a novel treatment to reverse neurological impairments such 
as memory performance.

In animal models memory can be quantified and assessed 
using the Object Recognition Test (ORT), which evaluates 
the ability to remember and recognize a previously present-
ed object and discriminate it from a new one. There will be 
a new object if the animal has a successful memory reten-
tion [68,69]. Thus HAND animal models can be used to 
characterize learning and memory, as well as the alteration 
of brain cellular activity and cognition. The limitation of 

the HAND mouse model is that they cannot perfectly rep-
resent HIV patients with HAND. However, they serve as 
an excellent preclinical model for novel treatment and for 
pathogenetic studies. Notably, a reliable marker of human 
HAND and autopsy studies are critical for us to define a 
more precise model. Our goal is to eliminate HIV reservoir 
and HIV infection in the brain. The HAND animal mod-
els may be applied to investigate other diseases with neu-
ro-cognitive disorders.

Discussion

In summary, drugs of abuse combined with HIV infection 
accelerate systemic immune perturbations and neurologi-
cal disorders leading to increase mortality and morbidity. 
Animal models are warned to be a suitable approach to 
characterize the underlying mechanisms of HIV-SUD co-
morbidity.
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