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Abstract Advances in technology have allowed for the expansion of
the field of epigenetics, providing a deeper understanding of gene-
environment interactions. Investigations into the neurobiological basis
of substance abuse have benefitted from these advances, with findings
suggesting that epigenetic mechanisms underlie drug-induced modifi-
cations of brain morphology, synaptic plasticity, and behavior. Epige-
netic marks likely mediate the long-lasting and potentially transgener-
ational alterations of neuronal chromatin and subsequent gene expres-
sion that may lead to persistent relapse vulnerability and/or offspring
vulnerability to addiction. Understanding the epigenetic mechanisms
as well as potential sensitive windows for these alterations may provide
novel insight into how epigenetics factor into the individual vulnerabil-
ity and unique time periods for added vulnerability to illicit drug expo-
sure. In the current review, we outline recent literature that provides
evidence for early epigenetic changes in several addiction models. We
begin the review with an overview of epigenetics as they relate to drug
use and abuse, and next focus on findings in the context of prenatal,
childhood, and adolescent stages with additional references to adult
models of addiction. Further, we also focus on studies that discuss the
transgenerational inheritance of epigenetic changes, and how they may
affect the individual across development. Lastly, the work presented
here and potential future studies focus on demonstrating early disrup-
tions in epigenetic marks following acute or repeated drug exposure
that may be of relevance in the broader goal of identifying risk factors
and novel targets for addiction treatment.
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1. Epigenetic mechanisms and substance abuse vulnera-
bility

From the initial coinage of the term “epigenetics” in the
mid-twentieth century, deriving from the Greek “epigen-
esis”, it was broadly defined across scientific contexts to
refer to the transmission of information above the level of
the genome [1,2]. Presently, however, epigenetics is used
in reference to the study of potentially reversible changes
in gene expression and cell phenotype in the absence of
inherent deoxyribonucleic acid (DNA) sequence changes.
Epigenetics can also be used to reference environmental
changes that have an influence on the expression of
ribonucleic acid (RNA) from coding sequences [3,4]. Here,
we will refer to molecular epigenetics as “the structural

adaptation of chromosomal regions so as to register, signal
or perpetuate altered activity states” [5]. Several lines of
research suggest that molecular epigenetic mechanisms are
associated with the neural plasticity underlying behavioral
adaptation and maladaptations observed in mammals, and
an important mechanism underlying permanent changes to
neural processes across individual systems [6]. From this,
it has been generally accepted that epigenetic mechanisms
are active and persistent throughout the nervous system
and contribute to protracted neurobehavioral effects
with potential clinical relevance. For example, epigenetic
changes are the basis of rare neurodevelopmental diseases
such as Prader-Willi syndrome and Fragile X syndrome,
but are also implicated in relatively common diseases
such as rheumatoid arthritis and multiple sclerosis [7,8,9,
10]. Substance use disorders also seem likely to involve
epigenetic mechanisms, given the significant role of both
heritable and environmental factors in their etiology [11].

Many epigenetic shifts occur at the beginning of the
lifespan and can be introduced or modified by various
factors such as levels of environmental toxins, psychological
stress, and drug exposure [12,13]. For the latter, maladaptive
plasticity within the shell of the nucleus accumbens
(NAc), the medial forebrain bundle (MFB), and the
ventral tegmental area (VTA) [14,15,16] as well as the
prefrontal cortex (PFC), basolateral amygdala (BLA), and
hippocampus [11] is often reported in models of addiction.
These neuronal modifications following repeated drug
use promote the intake of the drug of choice over regular
necessities and social obligations, and can exacerbate or
initiate already-present forms of mental illness such as
schizophrenia and bipolar disorder (as reviewed by Cassidy
et al. [17] and Hambrecht and Häfner [18]). Moreover,
observed neuroanatomical and epigenetic changes persistent
in nascent and long-term substance abusers have been
correlated with facilitation of drug craving (as reviewed by
Kauer and Malenka [19] and Volkow and Baler [20]).
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The heritability of addiction is estimated to be between
30% and 70%, and it is suspected that a large portion
of this may be specific to the type of drug utilized [21].
Using heritability indices, the liability for substance abuse
transmission has remained relatively high at about 70%
between dizygotic twin siblings [22]. Given these data,
there were expectations in this field that the identification
of specific gene polymorphisms contributing to risk in
drug addiction and psychiatric disorders would follow
recent revolutions in genomic technologies. Genome-
wide association studies have only linked a limited
number of genes that explain a fraction of the heritability
imputed epidemiologically (reviewed by McCarthy and
Hirschhorn [23]). In this context, it is important to remember
that the heritability derived from twin studies is not exactly
homologous to the presence of changes in protein coding
genes [24]. Twins share a maternal uterine environment
and often major features of the developmental environment,
and both are often underspecified in human and animal
studies [25]. Given that germ cells are subject to the
effects of uterine environment, it is likely that there are
also grandmaternal effects on epidemiologically imputed
heritability, as signaled by cases of nicotine exposure [26].
Several plausible explanations for this “missing heritability”
exist, including epigenetic information likely responsible
for connecting genes and environmental changes [27].

Epigenetic sensitivity during certain developmental
windows may also explain adolescents’ heightened risk for
substance abuse over adults. In adolescence, an imbalance
between executive function and self-regulation influence
the likelihood of substance use and abuse from initial
contact. Multiple negative consequences are associated with
adolescent drug use and abuse; in addition to environmental
challenges, adolescents face decreased school standing
and desire to interact with peers along with increased
likelihood of future drug use in adulthood [28,29,30]. A
full understanding of adolescent vulnerability to drugs is
not completely apparent from clinical research alone (as
reviewed by McCutcheon and Marinelli [30]). Findings
from epigenetic studies show that patterns of DNA
methylation differ globally across neurons and glia prior to
adulthood, and centralized epigenetic programming events
in the central nervous system (CNS) guide the transition
to maturity [31]. Understanding changes to the epigenome
caused by drug use prior to adulthood is, therefore, of
critical importance to researchers, as the natural processes
facilitating maturation of the CNS may be disturbed by
the epigenetic modifications introduced by various drugs.
Preclinical studies that examine genes, environment, and
epigenetic changes over time, with the ability to control
varying confounds such as sex, environment, and age, are
valuable for highlighting mechanisms of drug vulnerability
and potential novel therapeutic intervention.

2. Epigenetic mechanisms

Molecular epigenetics includes three main categories
of molecular mechanisms: (1) histone modification, (2)
covalent DNA modification, typically by methylation and
hydroxymethylation of cytosines, and (3) noncoding RNA
(ncRNA). To this one might also include the emerging
science of “epitranscriptomic” modifications of RNA
molecules, though this has been less included. Each of these
mechanisms possesses unique subclasses, thus, creating a
large assortment of total epigenetic permutations. Contained
within every mammalian somatic cell is the organism’s
entire genome, coded in DNA. A single strand of DNA
contains about three billion base pairs coded into gene
structure, and may often exceed the physical limits of certain
cell types and structures. To overcome this issue, DNA is
tightly wound in one hundred and forty-seven base pair turns
around nucleosomes, which are octamers composed of four
core histones [32,33]. Each nucleosomic core contains two
copies of the globular histone proteins H2A, H2B, H3, and
H4, and each of these has an unstructured, amino-terminal
“tail” [34]. Chromatin is the complex that contains DNA,
RNA, and proteins within eukaryotic cells, and is critical for
the function of the cell itself [35]. The structure of chromatin
may exist in two basic condensation states, euchromatin
and heterochromatin [36]. Euchromatin, its open state,
is often related to active or on-going gene inactivation
transcription processes. Heterochromatin is associated with
gene inactivation or repression due to its compacted nature,
which renders the DNA inaccessible to the transcriptional
machinery. The compaction of the DNA in heterochromatin
prevents transcription factors and replication initiators
from reaching the promoter and start site of genes [36],
thereby inhibiting expression. Figure 1 depicts a cartoon
of the epigenetic mechanisms and interactions in neurons
emphasized in the following section.

3. Histone modifications

Enzymes that interact with the exposed and available ter-
minal tail domains of histones perform these modifications
(though modifications within the globular histone core have
been observed [37]). It has been suggested that distinct
patterns of covalent histone modifications across cell-types
have the potential to make up a “histone code” that may
help regulate gene transcription on a precise scale—one
that exceeds what was previously imagined [38]. Histone
alterations may be interrelated or correlated in activation
state, demonstrating their complexity [39,40,41]. It is
undeniable that histones, therefore, retain a great deal of
control over genomic state simply by limiting or increasing
the access of transcription factors to exons or regions
of interest. The extent of their functional significance
is controversial, however, as there are more than one
hundred described histone modifications. We will restrict
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Figure 1: A cartoon depicting the potential sites of interaction for acute treatment with multiple classes of drugs of abuse—
including ionotropic (e.g., alcohol interacting with NMDA receptors) and metabotropic (e.g., cocaine and amphetamine
action on G-protein coupled receptors) receptors. For more repeated drug exposure and chronic models, interaction with
neurotrophins and their receptors may also occur (i.e., activation of brain-derived neurotrophic factor (BDNF) interacting
with TrKB). Further, many drugs have indirect interactions with nuclear receptors, which play a significant role in chromatin
remodeling. Also shown are downstream activation of 2nd messenger cascades that, in turn, stimulate any number of events:
epigenetic writers and erasers, DNA methylation, histone modifications (i.e., acetylation, phosphorylation, and methylation),
and ncRNAs. These events can lead to longer lasting effects on gene expression and/or messenger RNA (mRNA) stability
and translation.

our focus to the best studied regarding substance abuse and
related disorders. Histone acetylation is one of the most
widely studied histone modifications and is regulated by
histone acetyltransferases (HATs) and histone deacetylases
(HDACs). HATs neutralize positive charges between the
histone and wound DNA sequence through the addition
of an acetyl group to a basic amino acid such as lysine.
The resulting acetyl marks are typically associated with
the open chromatin state and gene activation in eukaryotic
cells [42,43]. As they remove acetyl marks, HDACs have
been associated with gene repression in chromatin [44,
45]. Interestingly, the activity of HATs and HDACs is
not definite; the activity of these enzymes may switch or
overlap depending on the overall state of chromatin or the
requirements of the promoter sequence being modified [46].

In the CNS, regular histone acetylation through HATs
appears to be essential for the formation of memories
and learning in the hippocampus [47,48,49]. The use of
nonselective HDAC inhibitors therefore, increases overall
memory capacity in mice, specifically in fear-contextualized
learning, and may include additional transcription factors.
Histone deacetylation appears to work, in turn, as a process
that negatively regulates long-term potentiation (LTP)
and memory formation [50,51], and moreover, serve
multiple functions that include improving cognition [52].

Histone phosphorylation was initially linked to chromatin
compaction during mitosis (as reviewed by Gurley et
al. [53] and Rossetto et al. [54]), occurring at the protruding
histone tails of chromatin that extend from the nucleosome.
Primarily occurring at serine (S), threonine (T), and tyrosine
(Y) residues, histone phosphorylation has been linked to
DNA damage repair and transcriptional regulation as well.
Phosphorylation of serine 10 on histone H3 is especially
noteworthy, as it is essential for the completion of the
mitotic process and is hypothesized to act as a signal for the
promotion of transcriptional activation [55,56].

Unlike histone phosphorylation, histone methylation is
specific to lysine (K) and/or arginine (R) residues along
the histone tail and can occur in mono-(me), di-(me2) or
tri-(me3) forms [57]. Classes of histone methyltransferase
are often grouped according to residue associations and
methylation valences (mono-, di- or tri-methyl). Certain
methylation states are restricted in eukaryotic organisms.
It appears that H3K9me1 and H3K9me2 states, which
are primarily associated with transcription, are limited
to euchromatic regions of chromatin, and are indeed
specialized for eukaryotic organisms. The biological
significance of these methyltransferases and changes
in histone methylation state are highlighted by their
appearance across mechanisms and systems [58].
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Occasionally, histone methylation may require multiple
enzymes depending on the methylation valence [59], and the
most studied in the nervous system include five H3 residues
including K4, K9, K27, K36, and K79, along with an
additional residue on H4, which is K20 [40], though many
other residues can be methylated. The selectivity of these
residues is determined by the histone methyltransferase
involved, but several enzymes may be required in order to
shift one residue from unmethylated to the trimethylated
state due to energetic requirements [46]. Classes of histone
methyltransferase are often grouped according to their
residue associations and methylation abilities, and certain
methylation states are restricted in eukaryotic organisms.
H3K9me1 and H3K9me2 states, which are primarily
associated with transcription, are limited to euchromatic
regions of chromatin, and are indeed specialized for
eukaryotic organisms. The purpose of histone methylation
at gene promoters, much like histone acetylation, may be to
activate or inactivate genes required for cellular function;
most trimethylations are repressive, though H3K4 trimethyl
mark is associated with the promoters of actively transcribed
genes [44,59].

4. DNA modifications

Covalent modifications of DNA represent one of the
best-studied classes of epigenetic marks. Most work on
DNA modification has focused on cytosine methylation
(mC) or, more recently, hydroxymethylation. Generally,
cytosines adjacent to guanosines are methylated, hence the
CpG nomenclature is used to describe the mark. Cytosine
methylation is usually associated with transcriptional
repression and with the binding of methylated DNA binding
proteins such as methyl CpG-binding protein 2 (MeCP2),
a transcriptional regulatory protein involved in neuronal
development. In mammals, cytosine is methylated by three
DNA methyltransferases (DNMTs): DNMT1, DNMT3a
and DNMT3b. DNMT1 is responsible for maintenance
methylation while DNMT3a and DNMT3b are responsible
for de novo methylation events [60]. The hydroxymethyl
modification of cytosine (hmC) was discovered as a mark
enriched in neurons, particularly cerebellar Purkinje
cells [61]. The three members of the TET family of
dioxengenases (TET 1–3) are responsible for the oxidation
of mC to hmC, though TET 3 seems to be the most
important in mammalian development [62,63]. The hmC
mark is associated with the H3K4me3 mark and positively
correlates to gene expression, suggesting that this mark is
associated with active chromatin in contrast to the generally
repressive nature of the mC mark. While hmC and mC
appear to have different functions with regard to the control
of gene expression, it is worth noting that the most common
method of examining cytosine methylation in the genome,
bisulfite sequencing, does not distinguish between the two

marks, so results derived from this technique should be
interpreted with caution [64]. While a number of other
modifications of DNA have been catalogued, few have been
examined in the context of the neurosciences [65].

5. ncRNAs

Studies of mammalian genomes have shown that most of
the DNA is transcribed [66]. A large number of ncRNAs do
not code for a protein or a molecule in translation, but are
transcribed regardless. The classical molecular genetic view,
while initially focused strictly on protein-coding genes, has
now been expanded to include these RNA sequences once
thought to be “junk” [67]. The few known abilities of
these ncRNAs include carrying out a small number of
biologically prescribed functions such as ribosomal RNA
(rRNA) or transcriptional RNA (tRNA) sequences. New
findings have revealed that multiple ncRNAs are able to
alter gene expression and chromatin structure. Further, it
appears that ncRNA levels increase with the complexity of
the organism [68] and are developmentally regulated [69].
These advances in describing the function of ncRNA
sequences in humans are exciting for the field of epigenetics
specifically and to cell biology more generally.

ncRNAs have been classified based on regulatory
properties. For example, small nucleolar RNAs (snoRNAs),
Piwi-interacting RNAs (piRNAs), microRNAs (miRNAs),
and long noncoding RNAs (lncRNAs) follow this nomen-
clature [70]. snoRNAs and piRNAs are associated with
the “protection” of the genome from the insertion of
transposable elements [71] and, until recently, were
not thought to be active in the nervous system [72,73,
74]. Further, there are novel ncRNA transcripts that
are associated with promoter regions that can enhance
the coding ability of enzymes acting in the transcription
process [75,76]. miRNA and lncRNA have been extensively
studied in humans, as these transcripts are related to stable
genomic changes in the individual that persist long after
an initial drug exposure. Moreover, given that ncRNAs are
conserved from one generation to the next, it is possible that
they may contribute to heritable differences in individual
susceptibility to different drugs of abuse.

6. Epigenetics and metabolic factors

Epigenetic changes are represented in clinical metabolic
diseases that were previously considered heritable. For
example, common diseases such as Type-II diabetes and
hypertension may change susceptibility rate from one
generation to the next depending on environmental factors
and exposure rates in the parent [77]. The change may be
due to epigenetic modifications introduced by nutrition,
metabolic factors, and the development of the adipose
system in the individual. Theories regarding alterations to
metabolic rate and metabolic factors are fairly new and
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have yet to be thoroughly analyzed. However, substantial
literature suggesting the involvement of epigenetic factors
in transgenerational disorders have been described [78].
Metabolic factors and substrates that act as molecular
epigenetic precursors control cellular redox reactions and
thus, control epigenome status through the production
of molecular precursors to HDACs/HATs and histone
methyltransferases. These precursors provide feedback
for regulation of epigenetic factors in the cell [79]. In
turn, epigenetic regulation of the genes that produce these
factors may hamper or increase their production, shifting
homeostasis in the cell system [78]. For instance, the
growth of the cell is dependent on an intracellular burst of
acetyl-CoA, which triggers downstream metabolites that
enrich genes for growth through histone acetylation [80].
The downstream effects of drugs of abuse on neural
systems and physiology such as the mesocorticolimbic
system, vasoconstriction, and nutritional decline are well
characterized [81,82]. Less information, however, is known
regarding how drugs may affect the metabolic pathway
and, ultimately, the expression of drug-related genes in the
system. It is likely that chronic exposure to drugs over time
may result in altered thresholds for metabolic production
and decreased system functionality. For example, the
methylation donor molecule, S-adenosyl methionine, is
produced by the enzyme methionine synthase that, in
turn, depends on the levels of folate and vitamin B12 [78,
83]. Metabolic deficiencies that occur upstream in the
pathway impact gene expression and chromatin structure,
which appears to be the case with high and regular alcohol
consumption [84]. In addition, protracted opioid abuse
leads to a decrease in the expression of the glutamatergic
cell surface receptor EAAT3 [85,86]. EAAT3 is a necessary
cytosine transporter and changes in EAAT3 expression are
correlated with global methylation patterns [87]. Given
these initial findings, it is likely that there may be other
molecular-, protein-, and protein receptor-level changes that
may be characteristic of the addicted brain.

7. Stress, developmental experience, and epigenetic
changes

Stressors are environmental events that an organism must
adapt to, typically through allostatic mechanisms (i.e.,
“adaptation through change”) [88], and can vary by
duration and the animal’s response [89]. Thus, stressors
are classic examples of environmental events that are likely
to recruit epigenetic mechanisms to induce adaptation [25,
89], including the maladaptations that may lead to drug
abuse. In animals, stress activates both the hypothalamic
pituitary adrenal (HPA) and the sympathetic adrenal
medullary (SAM) axes, and significant changes in HPA
and SAM functions can eventually alter homeostasis,
though the changes are not always coordinated [90]. Stress

activation may cause the axes to become hypo- or hyper-
responsive to stress, contributing to a range of phenotypes
that may characterize vulnerability to drug addiction.
For example, a stressor activates the HPA axis beginning
with the hypothalamic release of corticotropin releasing
factor into the portal system, triggering the release of
adrenocorticotropic hormone from the anterior pituitary
into the circulatory system. ACTH travels to the adrenal
gland to stimulate the release of cortisol in humans and
corticosterone in rodents. Circulating cortisol/corticosterone
prepares the individual for responding and eventually
deactivates the system through negative feedback to
the hypothalamus and pituitary. Instances of repeated,
uncontrolled stress can result in chronic activation of
the HPA axis and increased cortisol, particularly at key
developmental periods, creating a vulnerable state for
later illnesses including psychiatric decline and drug
consumption [91].

Overall, stress contributes to all aspects of the addiction
cycle, eliciting first-time use, impacting already-abusing
drug users, and increasing risk of relapse in abstinent
individuals. For example, increased stress has been shown
to lead to an increase in binge drinking behavior in
addicts [92], risk of relapse to cocaine use [93], and risk of
escalation to move on to more harmful drugs [94]. Elevated
amounts of corticosterone have been tied to the hedonic
value of abused drugs, and adverse effects on the HPA axis
are found in alcoholics and in animal models of chronic
alcohol intake, while alcohol escalation can be blocked
with glucocorticoid receptor antagonism [95]. However,
reports are conflicting as to whether maternal stress may
create resiliency in offspring or create lower basal stress
activation. These inconsistencies are likely due to variations
in design, including timing, type, and duration of stress and
testing window(s) for offspring, although a central factor
seems to be whether the stressor increases or decreases
maternal behavioral investment (for review, see [96,97,
98,99]). The question of the effects of prenatal stress on
addiction vulnerability has only been posed in a limited
fashion, with results demonstrating increased amphetamine
responding and locomotion in offspring [100] as well as
greater relapse to cocaine [101].

While many prenatal stress studies have been directed at
changes in the late embryonic and fetal period, the changes
in circulating blood levels of corticosteroids may also affect
future offspring as early as the preimplantation stage [102,
103]. Stress immediately before or towards the beginning
of pregnancy has been shown to decrease offspring weight
and hinder future social interactions and integration [104].
Early-life stress is common in many clinical populations as
well as in the general population, with some data indicating
that 21% of men and women have experienced both physical
and emotional abuse as children and 37% have experienced



6 Journal of Drug and Alcohol Research

at least one form of abuse [105]. Statistics for childhood
sexual abuse are also high, at 16% for men and 32% for
women [106]. Witnessing domestic abuse within the home
can also be incredibly stressful and increase the likelihood of
later life emotional disorders or substance abuse [105,107].
In clinical studies, use of the adverse childhood experiences
(ACE) checklist has yielded findings that negative child-
hood experiences (i.e., violent, verbal, physical or sexual
abuse, witnessing substance abuse, etc.) are correlated with
decreased adult self-care and multiple health risks, includ-
ing substance abuse [108,109]. Investigations of potential
epigenetic mechanisms contributing to this relation between
the early environment and later-life wellbeing seem likely to
identify targets for intervention.

In utero exposure to glucocorticoids leads to a prefer-
ence for opiates and ethanol in adult male Wistar rats [110],
further implicating stress exposure during early develop-
ment mapping on to vulnerability to drugs. At the behavioral
level, the early environment—including parent-offspring
interactions—contributes to the development of the HPA
axis. In fact, several lines of research suggest that the
quality of dam-pup interactions influences HPA functioning
and other neural systems involved in coordinating the
response to stress, and this transmission occurs above the
genome [111,112,113]. Differences in parent-offspring care
in rodents that affect later-life HPA-mediated stress response
parallel epigenetic changes that influence glucocorticoid
receptor gene Nr3c1 [114] and BDNF expression [115]. The
epigenetic changes observed following childhood abuse and
adversity are similar, where the GR and BDNF genes show
increased DNA methylation over control groups [115,116,
117]. Witnessing abuse and high chronic stress produces
differential DNA methylation patterns that can be predictive
of life trajectory as early as infancy and adolescence [118].
Furthermore, chronic stress exposure in adulthood can
affect the behavioral response of the following generation,
mediated in part by epigenetic marks in the PFC, amygdala,
and hippocampus [119,120].

Early-life stress produces changes in DNA methylation
that alters the MeCP2 gene coding in the sperm of male
mice [168] and may decrease their reproductive behaviors
through miRNA dysregulation [169]. How maternal
programming of stress response differs from paternal
programming response requires further characterization,
though there have been studies that have focused on sexually
dimorphic responses [169,170]. Given that males and
females differ by parent-of-origin allele expression [171],
miRNA number [169], and circulating hormonal levels in
utero and throughout the lifespan, additional work is needed
to assess sexually dimorphic epigenetic products of early-
life stress. A number of animal studies have been useful
for interpreting dynamic, genome-wide changes that may
occur from one generation to the next. Given the mounting

data providing direct and indirect evidence that epigenetic
marks may underlie many later-life behavioral shifts and
vulnerability, questions regarding the timing or dosing
of stress, the mode of transmission, and sex differences
warrant further study.

8. Alcohol (see Table 1 for summary of findings
presented in the following sections)

Alcohol addiction is a chronic and heritable illness that
impacts millions of individuals in the U.S., is linked
to increased mortality rates, and creates substantial
socioeconomic burden in treatment [172,173]. Alcohol
addiction causes changes to neural networks and alters
gene function because of repeated exposure. On the
proteomic level, alcohol use is known to modify one-carbon
metabolism that controls methylation in cells [174]. Due to
this alcohol-induced change, researchers have been able to
ascertain that epigenetic regulation is a critical component
of alcohol abuse disorders. Indeed, global DNA methylation
levels are raised about 10% in abusers relative to nonalcohol
consuming peers. This hypermethylation state is contrasted
by a decrease in DNMT3b mRNA expression and increased
homocysteine, suggesting a balance of methylation and
DNMT action [148,149,175]. Natural aging is associated
with hypermethylation in multiple genes, including the
dopamine transporter gene, and as such, one consequence
of alcohol dependence may be exaggeration of this process.

Alcohol craving and consumption tend to be more stress-
related for men [176], and there is a stronger association
between striatal activation, alcohol consumption, and
craving following stress in male animal models as well [177,
178,179]. In support of this finding, men are more likely
than women to report alcohol craving in response to
a stressor, increasing their susceptibility to addictive
behaviors and reward-responses from drinking [178]. DNA
methylation at the monoamine oxidase-A (MAOA) gene
sequence is correlated with alcohol and nicotine dependence
in women. MAOA methylation status determines the
suppression of the MAOA enzyme that modifies the
oxidation status of dopamine and serotonin, and is increased
in alcohol-dependent individuals [180]. In a later study
using a similar cohort of adult women, Philibert et al. [181]
used lymphoblast DNA to draw a direct relation between
genome-wide DNA methylation changes and alcohol use
patterns. Methylation of probes in the center of CpG islands
were positively related to increased drinking behavior
in women; however, this same association is not found
in men. Similarly, Ponomarev and colleagues [182]
identified upregulation of DNA methylation processes
in the promoters of several genes related to chromatin
functionality and transcription repression. The authors also
showed that the epigenetic alterations in alcoholism were
associated with increased transcription of transposon RNA
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Table 1: This table provides a summary of findings highlighted in the review. Clinical and animal models (in vivo and in
vitro) are included here, but are described greater length in the text with exact protocol and findings.
Drug (dose, route) Model, species or tissue Developmental age Effect on the epigenome References

Cannabinoids

Δ9-THC (50 mg/ml) Long-Evans rats ♀ and ♂ Adolescent Differential regulation of methylated regions,
altered mRNA expressions of
glutamate-related genes in the NAc

[121,122]

Δ9-THC (1.5 mg/kg IP,
every 3 days)

Cross-generational:
Long-Evans rats ♀ and ♂

Adolescent ↑PENK in the NAc-shell via H3K9me
↑Heroin self-administration vulnerability

[123]

Δ9-THC (1.5 mg/kg IP,
every 3 days)

Long-Evans rats ♀ Adolescent MOR-NAc function correlated with heroin
self-administration striatal PENK modified

[124]

Δ9-THC (1.5 mg/kg IP,
every 3 days)

Long-Evans rats Prenatal, tested
in adulthood

↑PENK decreased in adolescence,
increase MOR coupling following heroin

[125]

Opioids

High-fat diet (12% fat) C57BL/6J and DBA/2J
Mice, Gestational;
offspring tested

Prenatal ↑PENK and MOR expression in the NAc, PFC,
and hypothalamus
↑Methylation at DAT, MOR, and PENK gene
promoter sits

[126]

Heroin, opioid analgesics Human ♀ and ♂ Adult ↑Methylation at OPRM1 exon
Global methylation of LINE-1 as correlated
with pain sensitivity

[127]

Heroin, methadone, various
analgesics

Human ♀ gametes Adult ↑DNA methylation at the OPRM1 gene in
blood and sperm samples, correlated with
increased pain

[128,129]

Heroin, methadone, various
analgesics

Human ♀; Sprague-Dawley
rats ♀; C57BL/J6 mice ♀ Late adolescence,

adult
↑H3K27me3 in the VTA-NAc circuit
↑Dopaminergic signaling
↑Downregulation of BDNF expression

[130,131]

Psychostimulants

Cocaine (acute, 20 mg/kg
IP) (chronic, 20 mg/kg IP
daily for 7 days)

Sprague-Dawley rats ♀ Adult ↑H4 acetylation, H3 phosphoacetylation
at the cFos gene promoter in striatum
↑++ H3 hyperacetylation after chronic
cocaine only

[132]

Cocaine (chronic, 4 mg/kg,
every 4 h daily for 7 days)

Sprague-Dawley rats ♀ Adult ↑H3 and H4 acetylation in the NAc shell
positive correlation between CaMKIIα
and drug motivation

[133]

Cocaine (acute, 1.2 mg/kg)
(chronic, 5 mg/kg IP for 4 days)

C56B7/J6 mice ♀ Adult ↑H3K14 and H4K8 acetylation in the
hippocampus

[134]

Cocaine (chronic, 5 or 20 mg/kg
daily for 7–14 days)

C56B7/J6 mice ♀;
rat-originated striatal
embryonic neurons

Adult ↑HDAC5 in the striatum, drug-related
modifications in gene expression

[135]

Cocaine (acute, 2.5 mg/kg IP) C57BL/6J mice ♀;
genetically modified

Adult ↑Downregulation of histone acetylation in CBP
↑Decrease in cocaine-related behavioral
sensitivity

[136]

Amphetamine (acute,
2.0 mg/kg IP)

C57BL/J6 mice ♀ Adult ↑H4 acetylation
↑++ H4 acetylation when paired with VPA

[137]

Amphetamine (acute,
2.0 mg/kg IP)

C57BL/J6 mice ♀ Adult ↑H4 acetylation levels increased
↑++ H4 acetylation when combined with
BA or VPA

[138]

Cocaine (self-administration,
0.33 mg/kg on an FR1
schedule)

Wistar rats ♀ Late adolescence,
adult

Combined with HDAC inhibitors (TSA,
phenylburtyrate), dose-dependent
attenuation of cocaine self-administration

[139]

Cocaine (acute, 20 mg/kg IP)
(chronic, 20 mg/kg IP for
7 treatments)

C57BL/J6 mice ♀ Adult ↑H3K9me2 in the NAc induced by G9a
repression

[140]

Cocaine (self-administration,
0.33 mg/kg on an FR1 schedule)

Wistar rats ♀ Late adolescence,
adult

↑Increased synthesis and expression of MeCP2
↑HDAC2, HDAC5, and HDAC11 gene
expressions

[141]
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Table 1: Continued.
Drug (dose, route) Model, species or tissue Developmental age Effect on the epigenome References

Cocaine (acute, 15 mg/kg IP)
(chronic, 15 mg/kg IP for
7 days)

C57BL/J6 mice ♀ Adult ↑Increased DNMT3a and DNMT3b expression in
response to acute cocaine
↑MeCP2 binding
↑Global DNA hypermethylation
Altered DNMT-1 and DNMT3a profile in the testes

[142]

Cocaine (chronic, 2 h exposure
for 7 days via inhalation)

C57BL/J6 mice ♀ Paternal exposure;
offspring ♀ and ♂

Sex-dependent modifications on
cognition and memory in offspring

[143]

Cocaine (acute, 20 mg/kg IP)
(chronic, 20 mg/kg IP for 7
treatments)

C57BL/J6 mice (♀)
Long-Evans rats (♀)

Adult ↑DNMT3a to enhance cocaine reward
Regulation of spine density in the NAc

[144]

Cocaine (chronic, 20 mg/kg
for 11 days)

CD1 mouse (female,
gestational)

Maternal exposure;
offspring ♀ and ♂ ↑Elevated methylation across exons in

hippocampal neurons
Significant fluctuations to DNA
methylation levels throughout the lifespan

[145]

Cocaine (chronic, 5 mg/kg or
10 mg/kg, 3 times a day for 2
days, then a final injection of
15 mg/kg)

Sprague-Dawley rats (♀) Adolescent ↑Reduced H3K4me3 and H3K27me3 levels;
differential regulation of > 60 genes in the mPFC

[146]

Cocaine (0.25 mg/kg,
self-administration on
a FR1 schedule)

Sprague-Dawley rats (♀) Late adolescence,
adult

↑H3 acetylation associated with BDNF-expression
via CREB in the mPFC

[147]

Alcohol Human Adult ↑Genomic DNA methylation (10%)
↓Global DNMT3a, -3b expressions

[148,149]

Alcohol (chronic) Human Adult (gametes) IG-DMR gene demethylation H19 gene
demethylation

[150,151]

Alcohol (chronic, 0.05-0.2%) Cell line — ↑HDAC2 expression [152]

Ethanol Murine embryonic
fibroblasts

— ↑Degradation DNMTs, methyl CpG binding proteins
↓Hippocampal HDAC activity

[153]

Alcohol C57BL/J6 mice ♀ Adult ↑H4 acetylation in the hippocampus (dentate gyrus) [154]

Ethanol (chronic, 1.8–8.1%
over 8 days)

Sprague-Dawley rats ♀ Adult ↑HDAC activity during ethanol withdrawal
↓H3K9 and H4K8 acetylation
↓Neuropeptide Y (NPY) expression in the amygdala

[155,156]

Alcohol C57BL/J6 mice ♀ Adult gametes ↓Global cytosine methyltransferase mRNA levels [157]

Ethanol (25% in H2O, ad-lib)
CD1 mice Maternal exposure;♀ and ♂ Disruptions in intraneocortical circuitry in

sensory and motor areas; aberrant FGF8
and Id2 gene expression

[158]

Ethanol (acute, 2.0 g/kg) C57BL/J6 mice ♀ Maternal exposure;
offspring ♀ and ♂

↓Global DNA methylation
↓Global methylase activity

[159]

Ethanol (acute, 5.8 g/kg) B6 mice ♀ and ♂ Maternal exposure;
offspring ♀ and ♂

↓Igf1 DMR regions [160]

Ethanol (2% w/v, 2000 mg/dL) Zebrafish embryos — ↓Global miR-9 expression downregulated [161,162,163]

Ethanol (70 mM/mL over
5 days)

Murine neural stem cells
(mNSCs, GD 12.5)

Prenatal ↓Global miR-9 expression downregulated in
the VZ (ventricular zone)

[163]

Ethanol (3 g/kg over 2 days) Wistar rats ♀ Adolescent, adult ↑Genomic H3 and H4 acetylation at cFos gene
promoters, FosB and BDNF genes
Bidirectional H3/H4 modification in the FC,
striatum, and NAc
↑Genomic increases DRD2 and NMDAR2B
expression in the PFC

[164,165]

Ethanol (acute, 6.0 g/kg at 1,
3, and 12 h via IP)

Sprague-Dawley rats ♀ Late adolescence ↑G9a H3K9 methylation across varying samples [166]

Ethanol (acute, 1.0 or
2.5 g/kg SC)

C57BL/J6 mice ♀ and ♂;
genetically modified ♀ and
♂ CB1R mice ♀ and ♂

Adolescent ↑G9a activity
↑H3K9me2 and H3K27me2

[167]
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and expression of L1 derived proteins. These agents of
genomic plasticity have been implicated in both neural
plasticity and disease processes [183,184]. This work, and
studies employing gene expression profiling targeted at
brain regions implicated in alcoholism, points to a role for
epigenetic changes in alcohol-related pathology [185,186].

8.1. Developmental effects of alcohol

It has long been established that the earlier the exposure
to alcohol, the more significant the consequences. Zhou et
al. [187] demonstrated that genes associated with neural
development—including cut-like 2 (cutl2), insulin growth
factor-1 (Igf1), and SRY-box containing gene 7 (Sox7)—
were disrupted in expression by changes in H3 lysine 4
trimethylation after a six-hour alcohol exposure in vitro.
This model highlights mechanisms contributing to alcohol
interference of neural stem cell differentiation for systems
involved in long-term neurobehavioral alterations common
to fetal alcohol spectrum disorder.

Changes in the epigenetic status of essential genes such
as BDNF also emerge following repeated alcohol exposure.
BDNF gene variants are implicated in changes in cortical
neuroplasticity, especially as a mediator of LTP, and are
critical for neuronal development and survival [188,189].
Alterations to the BDNF gene through polymorphisms or
gene variants increase the likelihood of ethanol consumption
and augment anxiety-like behaviors in rodents [51,155].
At the epigenetic level, histone deacetylase 3 (HDAC3)
downregulation to the BDNF promoters (PVI, PII, and
PIII) and upregulation of BDNF exons have been noted in
C57BL/6J mice exposed to chronic ethanol [154].

Acute and chronic alcohol intake may negatively affect
histone configuration and histone-related enzymatic activity
as well. Manzardo and colleagues [190] reported large-scale
disturbances in histone-related and methylated genes in
the frontal cortex of alcoholics. Using a whole genome
approach with a combination of immunoprecipitation
techniques, both types of genes altered by alcohol exposure
were categorized on a scale from “low” to “high”. Genetic
information was sampled from frontal cortex tissue taken
from subjects who were reported alcoholics. Among the
thousands of genes sequenced, the promoter sequences
of the genes GNAS, H19, and HIST2H2AB were more
likely to be methylated in alcoholics, suggesting that
general histone-related modifications may occur in tandem
with methylation at alcohol-related genes. These genes
are also implicated in critical roles: GNAS codes RNA
transcripts involved in signaling and imprinting other genes
while H19 codes for a ncRNA transcript and is a gene
most commonly associated with imprinting defects in
embryogenesis and oncogenic transformation in cancer;
HIST2H2AB (Histone 2AB) is an intronless sequence that
codes for a protein within histone 2A. Modifications at

these sites may contribute to the anxiety-related effects
caused by acute alcohol exposure, in which decreases in
H3K9 and H4K8 acetylation in the central and medial
amygdala are found [191,192]. Decreases in HDAC activity
lead to anxiolysis, and these benefits are reversed in rats
experiencing ethanol withdrawal [155]. Treatment with the
HDAC inhibitor, trichostatin A, reduces anxiety-like effects
in ethanol withdrawing rats but not controls, suggesting that
epigenetic modulation may be a potential target for therapy
in abstinent users [156].

8.2. Prenatal exposure to alcohol
Alcohol has well-documented teratogenic effects, character-
ized in a range of severity of developmental, cognitive, and
physical birth defects [193]. Fetal alcohol spectrum disor-
ders (FASDs) are estimated to make up one out of every 100
live births, though this number may underestimate the true
prevalence (e.g., [194]). FASDs remain a leading cause of
nongenetic associated mental retardation [195,196,197]. In
animal models of FASD controlling for maternal care, later
life poor memory and learning disabilities are apparent thus,
implicating in utero exposure to ethanol [198]. Given the
lasting effects of alcohol exposure across development, epi-
genetic marks may be activated in utero. Indeed, the produc-
tion of DNMTs is disrupted, as alcohol consumption inhibits
the production of foliate upstream [199]. The extent of the
genetic and epigenetic changes induced by distinct pater-
nal contribution is not yet fully understood, as the physi-
cal changes are influenced by infant birth weight in mater-
nal exposure models. However, there is evidence for FASD
characteristics in offspring of alcohol-consuming sires [200,
201,202].

Ouko et al. [150] found elevated DNA demethylation
as a function of alcohol consumption at two differentially
methylated regions, H19 and IG-DMR, in the DNA of sperm
taken from male volunteers. The authors hypothesized
that new regulation of these genes may be transmitted
to offspring with undiscovered consequences for addiction
risk. Documented losses in H19 binding site methylation are
correlated with decreased fertility in the sons of alcoholic
fathers, as H19 binding sites are important for the regulation
of Igf2 (insulin-like growth factor 2), a gene implicated in
memory and reproduction [203,151]. The challenges during
development that the offspring of alcoholic fathers face may
ultimately be caused by hyper- and hypomethylated regions
of the genome within areas of the brain altered by alcohol
consumption, and some of the DNA methylation changes
produced may be unique to paternal contribution [151,
204]. Exposing adult male rats to alcohol for several weeks
reduced litter size and mean birth weights of the sired
offspring [157]. Expression of the mRNA transcript for
DNMT was also reduced in alcohol sired offspring [157].
On the positive side, supplementation with methyl donors
like choline improves histone and DNA methylation in the
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brain [205] and appears protective against animal models of
FASD [206]. This demonstrates that in addition to showing
face and construct validity, other epigenetics-related studies
of rodent models may be valuable for predictive validity—
identifying and targeting novel therapeutic interventions for
FASDs.

In a study using an in utero rat model, El Shawa and
colleagues [158] demonstrated extensive intraneocortical
damage and higher levels of anxiety-like behavior in the
offspring of female mice administered ethanol from the
first day of gestation. Area-specific genes such as Id2
and Cadeherin8 were modified in offspring of ethanol-
exposed dams, suggesting that epigenetic modifications
may influence intergenerational behavioral outcomes.
Further evidence for the role of epigenetic programming
in ethanol models was provided by disruption studies [159,
207] and prenatal ethanol mouse models that demonstrated
elevated DNA methylation in embryonic tissue [160]. An
early-life study of the effects of alcohol on the genome
of C57BL/6 mice showed a ten-fold increase in DNA
methylation during neural development, particularly along
chromosomes 7, 10, and the X chromosome in alcohol-
defective mouse embryos [195].

miRNA expression is critical for fetal programming,
where a small proportion of sequences regulate processes
like mitosis and cellular differentiation in developing
mammalian embryos [208]. Different miRNAs may become
activated depending on the stage of offspring development;
neuronal maturation and both positive and negative feedback
loops for cell receptors can involve identical miRNA-
targets [209,210]. Ethanol exposure can either decrease or
suppress the action of specific miRNAs, highlighting miR-
NAs as “master switches” regulating a complexity of genes
involved in ethanol intoxication and neurotoxicity [211].
For example, miR-9 controls a host of cellular mechanisms
required for the eventual growth of neuronal progenitor
cells and has been linked to synaptic plasticity and circadian
rhythm via its downstream effects on other molecules [211,
212]. Since miR-9 is suppressed in the area that will become
the brain in fetal stem cells [163] and is upregulated in adult
ethanol response [212], it should be noted that these effects
might be time-dependent as well (as reported in [213]).
This is true of miR-335, which is increased by lower
intermittent exposure to alcohol as opposed to miR-335
suppression subsequent to chronic alcohol abuse [214].
These findings demonstrate that early ethanol exposure
impacts DNA methylation and miRNA expression patterns
that correspond to pleiotropic gene expression profiles and
cellular processes that influence in utero development.

8.3. Exposure to alcohol during childhood and adolescence

Children and adolescents are more vulnerable to the effects
of alcohol relative to adults due to the (1) immaturity

of the developing brain, (2) reduced behavioral and
social impairments caused by any alcohol consumption,
and (3) increased health risks associated with binge
drinking [215,216,217]. Children whose parents have a
history of protracted alcohol use or heavy episodic intake
are more likely to consume alcohol earlier than their
peers [218] and experience social and school-related
problems that contribute to lowered self-esteem and
increased school difficulties [219]. Continued alcohol abuse
through adolescence is more likely to map on to sustained
drug use and comorbid mental health disorders [220,221].
Therefore, prevention of alcohol use prior to adulthood
should be emphasized based on its potential life-long
consequences. Alcohol consumption negatively affects
brain plasticity in an age-dependent manner by increasing
the inflammatory response and decreasing neurogenesis
in the dentate gyrus of the hippocampus [222]. Similarly,
there is a depression of hippocampal LTP following chronic
ethanol exposure in adolescent rats [223]. Abnormal brain
plasticity in reward areas has also been described and
is associated with specific histone modifications of gene
promoters. Using an ethanol binging paradigm in adolescent
rats, Pascual and colleagues [165] demonstrated an increase
in histone acetylation activity in H3 and H4 in the promoter
regions of cFos, FosB, and BDNF genes that was specific to
the PFC of adolescent but not adult rats. This corroborates
their earlier work [164] in which rats administered ethanol
were also found having a striking increase in HAT activity
over adults with no differences observed for HDAC activity.
In addition, the authors provide direct evidence for the
role of HDAC inhibition on gene histone acetylation and
reward-related behavior using ethanol conditioned place
preference (CPP). Use of the HDAC inhibitor, sodium
butyrate, acts synergistically with this change, leading to
increased transcription and overall expression of the same
genes (cFos, FosB, and BDNF), specifically in the brain
of adolescent animals. Given that the adolescent brain is
undergoing extensive remodeling [31], repeated alcohol
exposure impacting histone modifications (e.g., changes
in acetylation and HAT activity) can result in rewiring
the brain during this critical period [224]. Further work
found that posttranslational histone acetylation of H3 was
increased at lysine 9 by ethanol treatment in rat hepatic
stellate cells [166]. Ethanol in P7 rats can also increase
expression of G9a, a histone methyltransferase, which
contributes to elevation in dimethylation of H3 lysine 9
(H3K9me2) and 27 (H3K27me2) [167]. DNA methylation
studies that target pre- or peripubescence in animals are rare.
The earliest study of methylation changes to offspring was
done in a gestational model, in which ethanol was given to
a pregnant rat dam in the time leading up to birth [159]. The
authors concluded that ethanol contributes to modulation
of the general reward system by increasing global DNA
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methylation of genes related to alcohol addiction. Fewer
studies have looked specifically at how certain regions may
compare in overall gene expression. A sharp reduction of
DNA methylation is observed in the PFC, following ethanol
administration throughout adolescence and similarly in the
hippocampus [225].

9. Psychostimulants

As their name suggests, psychostimulants have psychoactive
properties and can induce increasing levels of behavioral
and neurocortical activation with repeated use [226].
Psychostimulants create disruptions of dopaminergic (DA)
signaling by occupying dopamine transporter (DAT) and
vesicular monoamine transporter 2 (VMAT-2), leading
to increased amounts of synaptic dopamine [227,228].
Epigenetic research, like much basic research focused on
psychostimulants, is often divided between the outcomes
following acute and chronic use, which may have con-
tradictory effects. For example, both acute and chronic
doses of amphetamine cause a marked production of cFos
mRNA transcripts in the striatum of rodent models and,
thusly, increased cFos gene expression in this region.
The expression, number, and type of Fos immunoreactive
neurons activated in the striatum, however, are modified
dependent on acute or chronic exposure [229]. It is
important to note that while the appearance of certain
proteins and gene outcomes may be similar, the pattern of
their expression may not be the same across drug regimens.

Cocaine is the most commonly studied psychostimulant
in clinical studies and preclinical models investigating
adult acute and/or chronic effects on gene expression. Most
research in this area has centered on histone modifications to
drug-related genes. cFos, BDNF, and the cyclin-dependent
kinase 5 (CDK5) gene which has been implicated in the
migration of neuronal migration [230], are often expressed
or repressed following psychostimulant use. Kumar and
colleagues [132] used chromatin immunoprecipitation
(ChIP) sampling on extracted wild-type, modified mouse
striatal tissue and found evidence for an increase in
acetylation of H4 on the cFos gene following acute cocaine
treatment; they also reported increases in H3 on the CDK5
and BDNF genes after chronic treatment. H3 acetylation in
the NAc shell contributes to the maintenance of cocaine-
based drug reinforcement behavior in rats, as evidenced
by increased behavioral response to repeated cocaine
administration in [133].

Histone acetylation within the CA1 of the hippocampus
regulates and consolidates memory formation [231] and
appears to affect the context-associated properties of drug
exposure [134]. Findings show that HDAC4 and HDAC5 in
the NAc negatively impact cocaine place preference, likely
disrupting brain plasticity around this learning by altering
drug-induced brain plasticity [132,135]. HDAC3 is also

implicated [232] as the acetylation state of H3 has a strong
effect on drug-taking behavior working through not only
HATs and HDACs, but also their catalyzing enzymes. For
example, adult mice that are generally deficient in CREB-
binding protein (CBP)—which possesses HAT activity—
have reduced sensitivity to cocaine intake over time. The
removal of CBP from the NAc disturbs cocaine-related
spatial preference and blocks cocaine CPP [136].

The HDAC inhibitors, butyric acid (BA) and valproic
acid (VA), have been used in a number of studies examining
epigenetics in drug-related behavior. BA and VA can alter
chromatin structure independent of transcriptional events,
but are primarily categorized as HDAC inhibitors for their
reorganization of chromatin structure. HDAC inhibitors can
lead to enhanced, context-specific behavioral sensitization
in a mouse model [137]. When administered BA or VPA
alone, mice showed no significant change in locomotor
response compared to controls; however, marked effects
on locomotor sensitization were observed when these
animals were given HDAC inhibitors following chronic
amphetamine use. This was supported by similar research
using a chronic amphetamine model with cotreatment with
HDAC inhibitors in C57BL/6 male mice [138].

There are inconsistencies in the literature regarding
the mechanisms underlying the neurobehavioral effects of
HDAC inhibitors. To address this, attempts have been made
to organize HDAC inhibitors into classes (e.g., Classes
I, II, and III) and to use more selective targets [138].
Recently, studies have emphasized comparing classes in
a single study and noting isoforms that may alter specific
responses. For instance, the HDAC inhibitors trichostatin
A and phenylbutyrate attenuate cocaine self-administration
without impacting sucrose self-administration, suggesting
that histone acetylation-based chromatin remodeling did not
globally affect motivational responses [139,141]. The use
of the Class I HDAC inhibitor, RGFP966, demonstrates that
histone acetylation in the hippocampus, infralimbic cortex,
and NAc is involved in memory processes important for
extinction [233].

ChIP sequencing of rat NAc following cocaine treatment
for variable exposure periods has implicated H9K9me2 and
-me3 as critical epigenetic marks in models of psychostim-
ulant addiction [140,234]. The histone methyltransferase,
G9a, which is regulated by ΔFosB, catalyzes H3K9
dimethylation at specific promoters in the NAc. G9a is
downregulated after repeated cocaine exposure, and this,
in turn, leads to changes in dendritic spine density in NAc
neurons [140]. This is one possible way in which changes
in histone modifications may affect overall neural response
to drugs, though other studies demonstrate that other
histones (e.g., H4) may play similar roles [132]. Changes
in DNA methylation levels have also been correlated
with behavioral sensitization to psychostimulants as well.
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Acute cocaine treatment of adult rats upregulates levels of
DNMT3a and DNMT3b in the NAc and the hippocampus,
leading to hypermethylation of genes associated with
drug behavior such as FosB [142]. DNMT3a is the most
prevalent methyltransferase in the NAc and has been
shown not only to alter spine density in this area by
over/underexpression but also to potentiate cocaine place
preference when inhibited in the NAc [144]. MeCP2, critical
protein, was one of the first epigenetics-related molecules
associated with psychostimulant use and contributes to the
neurodevelopmental disorder Rett’s syndrome [235,236].
MeCP2 levels are increased by DNMT3a action in the NAc,
creating changes in the NAc and functionally related reward
areas that “set-up” a drug-ready landscape for addiction at a
posttranscriptional stage [237,238].

9.1. Prenatal exposure to psychostimulants

Among the first generation of functional epigenetic studies,
work by He et al. [143] demonstrated that changes to
DNMT1 levels contribute to transgenerational genetic
transmission. In a chronic cocaine inhalation model in
male mice that mimics human crack cocaine binging, sires
were bred with drug-naı̈ve dams and cognitive behaviors
were recorded in offspring. Cocaine-sired adult female
offspring showed disrupted sustained visuospatial attention
and spatial working memory relative to male offspring.
While there were no significant differences in the DNA
structures of spermatozoa between cocaine-sired and control
mice, there were alterations in the expression of DNMT-1
and DNMT3a in the seminiferous tubules of the testes.
Cocaine-inhaling males had marked decreases in DNMT-1
and increases in DNMT3a. These data imply that in this
novel cocaine inhalation model, NAc DNMT3a regulates
behavioral and emotional responses to reward [144].
Further, blocking DNMT3a in the NAc leads to increased
motivation to continue cocaine intake. Much like MeCP2,
DNMT3a can regulate BDNF expression and, therefore,
may have related effects on learning and memory [239]. In
the interpretation of these findings, links have been made
between DNMT3a, BDNF expression, and methylation as
collective markers of early life adversity [240], suggesting
potential factors contributing to lifetime vulnerabilities.

Novikova and associates [145] hypothesized that
maternal exposure to cocaine would alter offspring behavior
through changes in the epigenome. Results indicate that
PND3 male offspring prenatally exposed to cocaine
demonstrated alterations in DNMT-1 and DNMT3b of
pyramidal cells in the hippocampus with some of changes
persisting through prepubescence (PND30). Interestingly,
both DNA hypomethylation and DNA hypermethylation
were found to occur in distinct CpG island regions, and
methylation targets not previously observed at PND3
appeared at PND30. An interesting point is that while

the authors reported cocaine-induced DNA methylation
changes, the changes were reported as irregular over time.
They posited that epigenetic status following cocaine
exposure might add increased susceptibility to addiction in
adulthood. Given this preliminary information, additional
animal studies are necessary to evaluate DNA methylation
patterns across development and multiple generations
following early cocaine insult.

In clinical literature, the changes induced by prenatal
cocaine exposure have focused on direct/indirect neuro-
chemical and vascular effects on the fetus. Intrauterine
stress was also suggested as a “third pathophysiology”
that interacts with fetal development to induce later life
changes [82]. Drug abuse and other negative maternal
behaviors detrimentally shift the intrauterine environment,
and this, combined with cocaine “stress,” may interact
with epigenetic mechanisms to facilitate vulnerability to
substances of abuse and mental health disorders. Prenatal
cocaine interferes with the norepinephrine transporter
(NET), a monoamine transporter gene that plays a role in
the intrauterine environment [241,242], such as reducing
placental glucocorticoids and catecholamines. NET is
one gene target that is downregulated following prenatal
cocaine working via DNA methylation in the placental
genome, leading to an overall decrease of NET in the
infant [243]. Similarly, the gene that codes for 11β
hydroxysteroid dehydrogenase type 2 (11β-HSD-2), a
metabolic enzyme that catalyzes active glucocorticoids in
system, is increasingly methylated with cocaine exposure.
Epigenetic repression of this gene is associated with hyper-
cortisolemia, hypertension, and glucose intolerance in both
animal and clinical models [244,245]. DNA methylation is
associated with the downregulation of NET gene expression
in the maternal environment following in utero cocaine
exposure [82,243]. The challenge in understanding time
course and the involvement of the placenta may be critical
in future research focused on transgenerational epigenetic
mechanisms of stimulant drug effects.

9.2. Psychostimulant exposure during childhood and ado-
lescence

Periadolescent mammals tend to be impulsive and seek
novel stimulation to a greater degree than animals of
other ages [246,247], likely a consequence of high levels
of dopaminergic function and immature frontal cortical
structures. Impulsivity and novelty seeking are personality
traits that increase the likelihood of initiating drug use and
can contribute to greater instances of adolescents becoming
addicted to substances such as nicotine [248,249] and other
psychostimulants [250,251,252]. Nicotine addiction may
also prime the brain for later-life addiction to other psychos-
timulants by increasing transcripts of FosB and inhibiting
HDAC [253]. Increased global acetylation may underlie
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the behavioral changes in response to drugs of abuse like
cocaine; in fact, locomotor sensitization and overall LTP are
enhanced following this priming effect [253].

In a binge-like rodent model of adolescent addiction
where cocaine was administrated in increasing amounts
over twelve days, there was a decrease in H3 methylation
in the mPFC of the adult rats compared to nonexperienced
controls [146]. Chromatin remodeling in this period may be
partially responsible for behavioral effects associated with
cocaine addiction, such that, for example, epigenetic repres-
sion of BDNF increases cocaine seeking behavior [147].
Cocaine-induced changes to gene expression may occur
via transcriptional activation by H3K4 trimethylation
and transcriptional repression by H4K27me3 in the
mPFC [146]. Many studies have focused on stimulant-
induced locomotor activity and epigenetic marks in young
adulthood, but further time-dependent epigenetic studies
that model the acute effects of cocaine/psychostimulant
exposure are warranted given the inconsistencies reported
in literature [254,255].

Studies using HDAC/HAT inhibition add to our
understanding of the complexity of epigenetic mechanisms
involved in adolescent psychostimulant exposure. Shen
and colleagues [138] found that coadministration of
amphetamine and either of the HDAC inhibitors VA or BA
augmented H4 acetylation. In fact, there was a synergistic
effect in striatal regions, regardless of the substance
dosing order. Coadministration of VA and amphetamine
upregulated CREB phosphorylation and Fos activation
and attenuated locomotor activity, indicating a cascade
of intracellular effects that may change the activation
patterns of the neurons involved [256]. Microinjection of
BA into other areas of the brain, including the amygdala
and striatum, also attenuated the drug-induced locomotor
activity associated with psychostimulant use [257].

10. Opioids

Opioid abuse is currently escalating at a higher rate than psy-
chostimulant abuse, because of the increasing availability of
prescription opioids [258]. Initial exposure to prescription
medications is linked to heroin use [259], adversely con-
tributing to increased rates of dependency with a reported
2.1 million U.S. adults and younger users [260], and ele-
vated mortality rates [261,262]. Morphine and codeine are
active ingredients in the opium poppy. Synthetic analogs,
including oxycodone, are used in prescription pain medica-
tion and are also known as drugs of abuse [259,263]. Mor-
phine is the most commonly studied opiate in investigations
of genetic and epigenetic changes, but all-natural opiates
and synthetic opioids act as agonists at mu, delta, and kappa
opiate receptors in the periphery and CNS.

The rewarding effects of opioids are mediated primarily
through mu-opiate receptors (MORs) located on the

surface of neurons throughout the brain and spinal cord.
These inhibitory G-protein coupled receptors indirectly
modulate mesolimbic dopamine neurons, but they are
also located in regions important for pain, memory, and
contextual conditioning such as the hippocampus and the
amygdala [264]. In fact, endogenous opiate signaling, MOR
levels, mRNA transcript production, and polymorphisms
have been implicated in several classes of drugs of abuse
in addition to opioids, including cocaine (reviewed by
Nestler [265]) and alcohol [266,267]. Chronic and long-
term use of opioids often results in a general hyperalgesia
as a primary withdrawal symptom [268]. The individual
differences in clinical response to opioids and their use are
hypothesized to be a direct result of genetic polymorphisms
of the OPRM1 gene that produces MORs [269,270]. The
HAT and HDAC balance is disrupted in mice with opiate
dependence [127], however, as the authors noted, the
study did not provide direct evidence for repeated pain
medications altering epigenetic marks, and so insights into
earlier triggers for epigenetic changes are needed.

DNA methylation in CpG-rich islands at the OPRM1
gene promoter is associated with increased chronic opiate
use, especially in the VTA [127,271]. Following a decrease
in MORs, silencing via hypermethylation likely contributes
to increased pain sensitivity following opiate abuse [127].
However, questions remain regarding the timing of these
effects of chronic opioid abuse as well as any other conse-
quences.

10.1. Prenatal exposure to opioids

While endogenous opioids mediate pain tolerance and
rewarding behaviors in both sexes, there are notable
sex differences in opioid effects on fertility. For males,
fertility, sex drive [272], and the DNA methylation of
genes such as OPMR1 in sperm are affected by repeated
opioid exposure [128,129]. In females, opioids influence
parturition, lactation, and maternal behaviors [273].
Ovariectomized female rats treated with exogenous
estrogens show increases in MOR internalization in neurons
of both the pre-optic nucleus and the amygdala [274]. As
of yet, DNA methylation patterns on the OPMR1 gene
relative to estrogen and progesterone receptor changes have
not been identified across the lifespan [275]. Interestingly,
fluctuations in endogenous opiates are observed at key
points in the development of maternal behavior, including
at the end of pregnancy, during parturition, and following
ingestion of afterbirth [276]. These data suggest that there
are epigenetic regulating effects that are likely to occur dur-
ing prenatal development. In a study by Sarkaki et al. [277],
male and female rats were administered morphine orally
and bred in order to assess the effect of parental addiction
on offspring brain plasticity. LTP was effectively reduced
in both male and female offspring in comparison to control
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groups, demonstrating that shifts in plasticity may be a
mechanism for transmission of offspring drug vulnerability
and/or learning deficits. Further work will be necessary to
investigate these changes, intergenerational transmission,
and the associated, causal effect on the epigenome.

Prenatal morphine exposure causes robust changes in
offspring: disruptions to the HPA axis and modification
of the stress response [278], decreases in long-term
potentiation in males [279], changes in male and female
sex behavior, and alterations in pain sensitivity [280,281].
Animals exposed to morphine in the perinatal period also
experience disruptions in the brain’s endocrine signaling
pathway, changing overall central nervous system levels
of norepinephrine as well as ovarian cycling and sexual
receptivity to wild-type males [282]. While there is not
yet any direct evidence linking early insult with opioids to
epigenetic changes that are transmitted across generations,
many of the aforementioned systems impacted by prenatal
opioids have been shown to induce a variety of epigenetic
changes. In fact, opioid exposure (as well as other licit
and illicit substances) during pregnancy leads to neonatal
abstinence syndrome (NAS) in the infant that may adversely
affect development and create physiological vulnerability
to later life disease and developmental challenges [283].
Jansson and colleagues [284] suggest that these NASs may
be a consequence of the infant’s adaptation to the repeated
methadone insult in utero. Interestingly, epigenetic alter-
ation of MORs in the PFC, NAc, and VTA following prena-
tal high-fat diet exposure [126] implicates a role for the adi-
pose system in programming susceptibility to opioid abuse.

10.2. Opioid exposure during childhood and adolescence

Childhood exposure to morphine or other exogenous opi-
oids negatively affects individual health, and later, repro-
ductive habits. Until recently, youth opioid abuse was under
represented in scientific literature and poorly documented
outside of case studies [285]. Outcomes following opioid
abuse range from mild cognitive disorders to severe respi-
ratory issues [286], resulting in increased hospitalizations
and deaths in recent decades [287,288]. Rising numbers of
adolescents exposed to opioids warrant further research on
opioid alterations to the developing brain, in addition to pub-
lic health prevention efforts [287].

Opioid use has noticeable effects on cognitive, social,
and emotional behaviors in the individual and across
generations. Male rats administered morphine show
increased, independently driven play behavior with a partner
[289,290]. Chronic morphine administration alters the VTA
such that it becomes 25% smaller [291], specifically through
reduction of dopaminergic synapses and neuronal branching
in pyramidal cells in this region [292]. The pyramidal cells
of the PFC and NAc are also changed by initial and
subsequent exposure to opioids [293] and these neurons

undergo long-lasting modifications that outlast the drug
exposure itself [294].

Both male and female adolescent animals are devel-
opmentally delayed in spatial memory, but only females
are delayed in memory recall [280]. Drug-naı̈ve adolescent
female animals that have had a maternal dam exposed to
morphine also show increased anxiety-like behavior in the
open field, implying that these changes are generationally
conserved [295]. Findings from Byrnes and colleagues [296]
also indicate that elevated mRNA expression of MOR-1 in
the NAc may mark addiction susceptibility in morphine-
exposed offspring. Therefore, this may suggest transmission
through epigenetic regulation of opioid-related genes in
gametes or maternal/paternal germline as observed in other
substances of abuse such as alcohol and psychostimulants.
Interestingly, modifications in vulnerability status may be
conserved from adolescence in the generation prior [297].

Adolescent opioid use has the potential to affect the
BDNF gene across its exon variants through epigenetic
repression in the VTA. Transcriptional events, specifically
through RNA polymerase II, are downregulated with
morphine use, and have lowered activity at specific promoter
regions of the BDNF gene in adult mice [131]. Blockade of
this gene and its products enhances overall locomotor and
rewarding properties of chronic morphine administration
in animals by increasing excitability and action potential
response of dopaminergic neurons [130]. BDNF levels
are initially low early in development and rise in late
adolescence into adulthood. Thus, it is likely that opioid
use may introduce epigenetic modifications to additional
neurotrophic factor-related genes to heighten susceptibility
to addiction through MOR mechanisms [298]. With MOR
transcripts detectable in the developing embryonic mouse
model as early as gestational day 9, even acute exposure to
opioids may modify the system [299].

Interactions with inflammatory system have also been
described in mediating the long-term and stable vulnerabil-
ity to morphine exposure. Astroglial activation through bac-
teria inflammation has been shown to selectively increase
MOR mRNA transcripts in reward-related brain regions,
most likely through the interleukins [300,301]. Further, the
reduction of IL-10 gene expression throughout glial cells
in the NAc decreases overall potential for morphine-related
behaviors, like conditioned place preference [302], leading
to the conclusion that illness or neuroinflammation may
create vulnerability to later drug use. Opioid dependence
has also been linked to inflammatory activation in the
VTA, as spontaneous withdrawal after escalation to chronic
morphine exposure causes increased prevalence of the
microglial factor Iba-1 [303]. Further work is needed
to examine whether these changes also correspond to
disruptions in epigenetic marks that persist throughout life
and/or can be transmitted across generations.
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11. Cannabinoids

Cannabinoids, most often inhaled marijuana treatments, are
used in medical therapies for pain reduction, anti-emesis
for cancer patients, stimulating appetite for HIV/AIDS
patients, and relieving intraocular pressure in glaucoma
sufferers [304]. There is also widespread recreational use
of marijuana in many populations across the world. Δ9-
tetrahydrocannabinol (THC) is the major psychoactive
component of Cannabis derived from the Cannabis sativa
and C. indica plants. Recreational users report feelings of
relaxation and greater sociability (see [305]), and the rate
of use among young adults has increased within recent
years [262]. Despite evidence that suggests chronic THC
exposure is linked to disruptive physical (i.e., increased
incidence of bronchitis) and cognitive health (e.g., memory
deficits), U.S. national surveys indicate that marijuana is
the most commonly used illicit substance for adults and
adolescents over the age of twelve [306,262]. Several
lines of research link illicit cannabis use and disruptions
of the endocannabinoid system to psychological disorders
like schizophrenia [307,308], bipolar disorder [309], and
anhedonia/major depression [310]. Debate exists as to
whether this exposure leads to later-life harsher drug-
taking tendencies, though reports of the early use of
marijuana do highlight a need for understanding how it
may affect the brain at this critical stage of life [311].
Repeated marijuana use causes dynamic changes in CB1
receptor expression and increases in MOR expression in the
mesocorticolimbic and opiate systems in the offspring of the
exposed parental line, contributing to the conservation of
drug-induced modifications in the genome and epigenome
across generations [306,312].

Similar effects are noted in adult populations, with
chronic exposure to exogenous cannabinoids producing
unique impairments in emotionality, serotoninergic and
GABAergic transmission [313,314,315]. Given these
behavioral effects and alterations in multiple neural systems,
investigations of the epigenetic mechanisms underlying the
effects of cannabinoids have been reported and discussed
at length (for review, see [316]). Further work should focus
on identifying the window(s) of early life exposure and the
associated epigenetic changes.

11.1. Prenatal exposure to cannabinoids

Early longitudinal studies that follow children prenatally
exposed to cannabinoids report disrupted sleep in the
exposed infant [317]. By three years of age, children
exposed to cannabis in utero already show poor cognitive
performance such as impaired visual-spatial reasoning
relative to their nonexposed peers. These children also show
significantly greater behavioral problems and heightened
distractibility [318,319]. As they aged, the children
also show decreased intellectual scores and heightened

likelihood of developing schizophrenia [320,321,322]. In
prenatal cannabinoid study, using male and female rats
placed on a chronic schedule of THC exposure and then
mated with similarly exposed rodents, researchers observed
distinct behavioral effects in drug-naı̈ve offspring [121].
F1 offspring of THC exposed parental lines developed
increased stereotypies and approach behavior towards a
novel stimulus following heroin self-administration and
withdrawal. These animals also demonstrated morpholog-
ical changes with striatal NMDA receptors significantly
decreased in comparison to control offspring. Long-term
depression of synaptic plasticity was also altered in the
NAc and dorsal striatum in offspring of THC-experienced
parents. These changes implicate epigenetic programming
in mediating this intergenerational transmission. Using the
offspring of rat dams exposed to THC during adolescence,
genome-wide DNA methylation analysis identified over one
thousand differentially methylated regions in comparison
to wild-type rats. Many of these alterations were in
genes associated with the regulation of the glutamatergic
synapse [122].

It is likely that maternal programming interacts with
the endocannabinoid system for separate programming,
as exogenous corticosterone administrated to pregnant
mice has been shown to decrease overall body weight
while increasing anxiety and reducing overall CB1-receptor
expression in the cerebellum of the offspring [323]. THC
is retained in the plasma of dams at a rate of about 10% of
total dose concentration and can cross the placenta [324,
325]. The endocannabinoid system places a critical role
in the conception, implantation, and development, and
THC may disrupt these mechanisms epigenetically in the
CNS (as reviewed by Taylor et al. [326] and Szutorisz and
Hurd [316]). This may explain vulnerabilities observed
later in life to other drugs of abuse such as alcohols
and opioids [327,328]. The ongoing importance of the
maternal environment in epigenetic regulation of the
endocannabinoid system of the offspring is further high-
lighted by the immunosuppressive effects of THC. Through
epigenetic marks like DNA methylation or miRNAs like
miR-690 [329], inherent systems may undergo permanent
changes prior to birth (as reviewed by Zumbrun et al. [330]).

THC exposure resulted in decreases in DNA methy-
lation in promoter regions within the NAc, as well as
hypermethylation within gene bodies at exogenic and
intronic sequences. These changes may lead to a “network”
of epigenetic marks in CpG islands that creates risk for
drug abuse. Functional analyses of these marks revealed
modifications at glutamate-related genes that mediate
synaptic plasticity, as well as genes that code for ionic
receptors and scaffolding proteins [122,331]. Observed
behavioral and morphological changes caused by THC
exposure should be related to their genic regions, though an
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obvious emphasis should be made for region specificity in
these studies. It will be important to describe the emergent
changes in these epigenetic marks from early drug exposure,
as this work may offer insight into potential windows for
treatment and/or intervention.

11.2. Exposure to cannabinoids during childhood and ado-
lescence

Given that adolescent populations are among the most
frequent users of cannabis as a recreational drug [332],
uncovering the lasting changes associated with repeated
use at this age remains an important topic to researchers.
The maturation of the endocannabinoid system occurs
during the adolescent period [333]. Accordingly, childhood
and adolescent use of endocannabinoids produces changes
that may have enduring effects on the developing system.
Studies that review outcome to long-term endocannabinoid
use in young clinical populations report increased risk for
later life depression and lack of motivation [313], which
may contribute to drug vulnerability [334]. Rodent models
match this modification in emotionality. Using an adolescent
cohort of male and female Sprague-Dawley rats tested and
sacrificed in adulthood, Rubino and colleagues [335] found
sex-dependent neuron morphological changes and shifts
in CB1 receptor number. These sexually differentiated
responses were associated with alterations in behavior,
where males and females demonstrated anhedonia in a
sucrose preference test, but only females presented with
comorbid with depression-like symptoms. Poor emotional
regulation is often met with cannabis-induced impairments
in working memory [336] and susceptibility to psychiatric
disorders like schizophrenia [337].

Interestingly, several adolescent exposure models
to cannabinoids (e.g., cannabinoid agonist (HU-210),
Δ9-THC) alterations have been observed in adult NAc
histone methylation (i.e., H3K4me3, H3K9me2), miRNAs,
promoter, and gene body (for review, see [316]). The
plasticity of dopaminergic neurons, responding to opioid
exposure, may increase individual vulnerability through
this overlap of reward system activation [338]. Further, the
epigenetic modifications made by cannabinoid exposure
in the adolescent brain overlap with those observed
within the opioid system. Adolescent male rats exposed
intraperitoneally to THC increase heroin self-administration
significantly faster than controls and have larger neuronal
opioid receptor populations overall as compared to
controls [124]. Exposure in this period is likely mediated
by epigenetic alteration to the proenkephalin (Penk) gene,
which codes for opiate neuropeptide enkephalin in the
NAc. Adolescent rats treated with THC and then made to
overexpress Penk by viral recombination and stereotaxic
infusion showed an increase in heroin-seeking as well as
heroin self-administration [123]. This same study found that

adolescent THC dosing was strongly associated with histone
methylation, one of the more stable and dynamic epigenetic
alterations. Increases in Penk gene expression were related
to decreases in H3K9me2 marks upstream from the Penk
gene in the NAc shell over a period of thirty days [123].
Distinct Penk-gene related profiles may even explain the
differences in adolescent vulnerability to other classes of
drugs as a consequence of THC use considering that Penk
mRNA did not vary between adolescents and adults. This is
supported by evidence that earlier—prenatal—exposure to
THC may alter Penk profiles in adulthood [125].

12. Expanded lifetime view
Given that there are enduring changes to the epigenome
that are caused by chronic drug taking, and that several
lines of research implicate critical developmental periods
of vulnerability, greater attention should be paid to
molecular epigenetic changes that may occur during
fetal development and adolescence to better understand
later-life drug susceptibility. Again, changes in epigenetic
patterns may also vary by age, and so additional work
should examine multiple changes associated with early
drug insult over long periods as well as at intervening time
points. For example, a naturally occurring genome-wide
decrease in DNA methylation has been associated with
aging in vitro [339,340] and in vertebrate tissues [341].
Specifically, there is hypomethylation along normally
hypermethylated, repetitive element sequences [342], and
the reason for this is unknown. Immunoprecipitation assays
at multiple points or at varying ages in clinical populations
may add insight into these developmental variations. If the
process is a consequence of or a cause of the global aging
of somatic cells, then it is likely that lasting epigenetic
changes from prenatal, early-life, and young adolescent
exposure may also have the potential to interact with these
epigenetically programmed events. Indeed, it is plausible
that the decline in global DNA methylation might reverse
some of the adolescent imprinting caused by drug exposure
or stress thus, reducing the burden of addiction with age.
Understanding this process would, therefore, be of benefit
not only towards understanding brain aging but also with
a potential for reversing the effects of drug risk patterns
acquired in early life. The mechanisms and research covered
discussed point to evidence of lasting changes “above
the genome” related to drug use and abuse that may be
transmitted across generations and certainly persist across
the individual lifespan. Given the available technologies
and the likelihood of their rapid improvement over the near
term, these questions are answerable and may offer hope for
innovative preventative therapies.

13. Future directions
This review highlights a number of novel areas of research
that remain open with regard to the epigenetic component
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of developmental vulnerabilities to substance abuse.
Transgenerational studies in addiction models will be
of value in examining unanswered questions as to how
drug use affects the germline and future generations both
behaviorally and physiologically. Even without direct
exposure to an addictive substance in the offspring,
epigenetic changes can appear in the following generation
due to parental substance use—some of which are persistent
through adolescence and may contribute to risk of use
and abuse. Several of the empirical papers presented here
focus on the filial 1 generation of offspring, but studies
that continue for additional generations can contribute a
great deal of knowledge for the field. Moreover, given
the vast amount of information implicating biological sex
differences across generations, and the clear interactions
between the organizational and activational effects of sex
steroids and the epigenome, future studies need to include
both sexes in investigations of epigenetic changes related
to drug exposure. Studies that focus on cross-sensitization
between distinct classes of drugs would also provide
important insights into addiction pathways in the brain
and further substantiate the mechanisms by which initial
exposure to one class of drug increases responses to a
separate class of drug by epigenetic reprogramming.

On a clinical level, individual differences in sex,
ethnicity, and socioeconomic level may need to be parsed
out for further study as well. For example, while OPRM1
gene expression and subsequently, receptor activation,
are important factors in opiate use disorders, there are
ethnicity-dependent genetic changes via DNA methylation
that occur in the promoter region of the OPRM1 gene [343].
DNA methylation state is also variable by ethnicity from
birth, and the individual differences in ethnic groups within
clinical populations can be statistically accounted for [344,
345,346]. Liu et al. [345] specifically suggested that ethnic
differences may be better captured by future improvements
in technology in the same manner that genome wide
analyses advanced knowledge of individual differences in
single nucleotide polymorphisms. Defining the population
stratification will impact genetic and epigenetic influences
and these changes are mediated through complex and unique
biological processes. Though ethnic differences cannot be
directly translated to an animal model, the continuation
of the work reviewed here will highlight epigenetic
mechanisms that may be relevant for understanding ethnic
variations.

Drug use and abuse clearly impact epigenetic changes in
the brain and may have a more pronounced effect at select
windows such as prenatal development and adolescence due
to the increased epigenetic plasticity present during these
periods. However, little is known about regionally specific
epigenetic changes during development, and still less about
how drug use or exposure might perturb those changes

and canalize the brain towards an abuse prone phenotype.
Challenges also exist in the development of drugs targeting
epigenetic mechanisms, while such drugs have made it
to the clinic already, for instance DNA methyltransferase
inhibitors, many have significant side effects which make
their use for the treatment of substance abuse difficult from
both a compliance and cost-benefit perspective. Others,
such as valproate, are better tolerated, though it remains
unclear the extent to which this drug acts on epigenetic or
other mechanisms with regard to substance use disorders.
Nonetheless, epigenetics represents a significant frontier for
substance abuse research and has already clarified many of
the molecular mechanisms by which the environment can
have lasting effects on the brain and behavior.
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