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Abstract The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum
membrane protein that involves a wide range of physiological func-
tions. The Sig-1R has been shown to bind psychostimulants including
cocaine and methamphetamine (METH) and thus has been implicated
in the actions of those psychostimulants. For example, it has been
demonstrated that the Sig-1R antagonists mitigate certain behavioral
and cellular effects of psychostimulants including hyperactivity and
neurotoxicity. Thus, the Sig-1R has become a potential therapeutic
target of medication development against drug abuse that differs from
traditional monoamine-related strategies. In this review, we will focus
on the molecular mechanisms of the Sig-1R and discuss in such a man-
ner with a hope to further understand or unveil unexplored relations
between the Sig-1R and the actions of cocaine and METH, particularly
in the context of cellular biological relevance.
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1. Introduction

1.1. The history of sigma receptors

Sigma receptors were first identified from the behavioral
and pharmacological studies, and were suggested as
a subtype of opioid receptors known as the “sigma
opioid receptor” [1]. Martin et al. proposed that three
distinguishable receptors (mu, kappa, and sigma receptors)
contribute to distinct symptomatology induced by opioids.
Since the prototypic sigma agonist, (+)SKF-10,047,
produced hallucinogenic effects, sigma receptors were
believed to specifically mediate the psychotomimetic
effects of opioids. Later studies, however, indicated that the
sigma receptor has certain features that distinguish it from
other opioid receptors: (1) the SKF-10,047 binding protein
has different stereospecificity from that of other opioid
receptors (i.e., affinity at sigma receptors: dextrorotatory
isomer > levorotatory; at opioid receptors: levorotatory >

dextrorotatory); (2) the (+)SKF-10,047 binding protein has
very low affinity for opioid antagonists such as naloxone
and naltrexone [2,3]; (3) naltrexone does not antagonize
SKF-10,047-induced behavioral effects [4].

Further studies from ligand binding assays revealed
that there are two subtypes of sigma receptors, sigma-1
and sigma-2 [5,6,7,8,9]. Sigma-2 receptor (Sig-2R) has a
reversed stereos electivity (levorotatory > dextrorotatory)
for sigma ligands such as SKF-10,047 and pentazocine
from that of sigma-1 receptor (Sig-1R). The existence of
Sig-1R and Sig-2R was strongly supported by the evidence
from photoaffinity labeling studies which showed that the
Sig-1R and the Sig-2R consist of 25 kDa and 18–21.5 kDa
polypeptides, respectively [8,9,10]. The Sig-1R has been
cloned and the sequence shows no significant homology
with that of any of other mammalian proteins including
opioid receptors [11]. At present, it is recognized that the
Sig-1R is a nonopioid, non-G protein-coupled intracellular
receptor comprised of a 24 kD single protein [12,13,14]. On
the other hand, the Sig-2R has not yet been cloned. Although
Xu et al. identified the Sig-2R as the progesterone receptor
membrane component 1: PGRMC1 [15], there exists certain
controversy regarding, for instance, its molecular size which
seems to be different from that of the Sig-2R. Further, the
Sig-2R could still be specifically photoaffinity labeled in the
PGRMC1 knockout cells [16,17,18].

1.2. Physiological functions of sigma receptors

Sigma receptors are expressed ubiquitously throughout
many organs [9,11,13,36,37,38,39,40,41]. The functions
of Sig-1R have been intensely investigated especially in
the central nervous system (CNS). The Sig-1R has been
implicated in neuropsychiatric diseases [42,43] such as
depression [44], anxiety, and schizophrenia [45], partly
because the Sig-1R binds to many psychotomimetic and
psychiatric drugs. In addition, it has been suggested that the
Sig-1R promotes a positive effect on memory and learning
processes [46,47]. Also, the Sig-1R seems to be neuropro-
tective in nature [48] and thus plays a role in neurodegenera-
tive disorders such as Alzheimer’s disease [49], Parkinson’s
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Table 1: Affinity of cocaine and METH at Sig-1R and Sig-2R.
Sample/reference Affinity for Sig-1R Affinity for Sig-2R

Cocaine
Rat cerebellum [19] 6.7±0.3μM∗1

Mouse brain [20] 2±0.2μM∗2 31±4μM∗3

Guinea pig brain minus cerebellum [21] 5,190 (3,800–7,060) nM∗2 19,300 (16,000–23,300) nM∗3

METH
Rat brain [22] 2.16±0.25μM∗2 46.67±10.34μM∗3

Guinea pig brain minus cerebellum [23] 4,390 (3,740–5,160) nM∗2 15,900 (11,700–21,500) nM∗3

∗1in competition with haloperidol.
∗2in competition with (+)-pentazocine.
∗3in competition with DTG in the presence of (+)-pentazocine.

Table 2: Peak concentrations of cocaine and METH in the blood, plasma or brain.
Drug administrating condition/reference Blood or plasma Brain

Acute cocaine

Mouse, 10 mg/kg, IP [24] 0.75μg/mL 2.6μg/g
Mouse, 25 mg/kg, IP [24] 1.5μg/mL 6.7μg/g
Rat, 8 mg/kg, IV [25,26] 0.61±0.06μg/mL 7.27±0.18μg/g
Rat, 20 mg/kg, SC [25,26] 0.49±0.06μg/mL 3.44±0.36μg/g
Rat, 30 mg/kg, IP [27] 2.7μM 1.41±0.09μM∗

Chronic cocaine

Rat, 20 mg/kg, SC for 3 weeks, twice a day [25] 0.50±0.10μg/mL 3.05±0.14μg/g
Rat, 10–20 mg/kg, SC for 10 or 30 days, once a day, 10 days, 4.1μM 10 days, 2.62μM∗

30 mg/kg, IP on the test day [27] 30 days, 5.5μM 30 days, 1.8μM∗

Human, 20.5 mg, IV [28] 180±56 ng/mL
Human, 94.6 mg, NI [28] 220±50 ng/mL
Human, 50 mg, SI [28] 203±88 ng/mL

Acute METH

Mouse, 2.5 mg/kg, IP [29] 2.63±0.27μg/g
Mouse, 5.0 mg/kg, IP [29] 4.96±0.35μg/g
Mouse, 10 mg/kg, IP [29] 8.90±0.40μg/g
Rat, 1 mg/kg, SC [30] 7.5 ng/mL 70 ng/g
Rat, 5 mg/kg, SC [30] 40 ng/mL 300 ng/g
Rat, 0.5 mg/kg, IV [31] 0.54±0.07μM
Rat, 2.5 mg/kg, IV [32] 1.0±0.1μg/mL

Chronic METH
Rhesus monkey, 0.32 mg/kg, IM [33] 51.0±8.5 ng/mL
Human, 30 mg, IV [34] 175 ng/mL
Human, 15.5 mg, IV [35] 100 ng/mL

∗Extracellular concentrations in the nucleus accumbens.

disease, amyotrophic lateral sclerosis (ALS), and strokes
[50,51]. Interestingly, because clinically available drugs
for those psychiatric and neurodegenerative disorders are
quite limited, the Sig-1R ligands are being explored to serve
as new therapeutic agents for those diseases. In addition,
the involvement of the Sig-1R in cancer, immune system,
neuropathic pain [52], cardiac functions [53], and retinal
disease has been reported. Regarding the Sig-2R, studies
on its specific functions have been difficult partly because
of the low selectivity of ligands and because of the lack
of information on its sequence. Nevertheless, as highly
selective ligands for Sig-2R are being developed, there
is a strong notion that the Sig-2R relates to cancer. For
example, the Sig-2R expression is dramatically elevated in
various tumor cells and Sig-2R agonists cause apoptosis
and tumor cell death [54,55,56]. The Sig-2R has thus been
recently receiving more attention as a potential biomarker
of proliferation [54,57,58]. It also has been suggested that

Sig-2R ligands possess antidepressant-like effects [59] and
may also attenuate the learning impairment [47].

1.3. Drug abuse and sigma receptors

Sigma receptors have been implicated in the addictive
process and toxicity induced by psychostimulants. Cocaine
and methamphetamine (METH) have been mostly studied
in this regard because cocaine and METH bind to the
Sig-1R at physiologically relevant concentrations [24,25,
26,27,28,29,30,31,32,33,34,35] (cocaine at 2–7μM and
METH at 2–4μM), however, they bind to the Sig-2R with
lower affinities (cocaine at 19–31μM and METH at 16–
47μM) [19,20,21,22,23] (Tables 1 and 2). Also, cocaine
and METH are among the most abused substances in the
world, and currently effective medications are lacking
against the addiction and toxicity of those two drugs.
Therefore, sigma receptors and associated ligands have been
explored as therapeutic targets against cocaine and METH.
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Figure 1: A schematic presentation of predicted topology and ligand binding regions of Sig-1R. The numbers represent
amino acid (a.a.) residues. The colored circles show the a.a. residues critical for Sig-1R binding to haloperidol (yellow)
and cholesterol (green), respectively. The TM2 and SBDLII are suggested to compose the ligand binding region of Sig-1R.
A splice variant of Sig-1R, which lacks a.a. 119-149 region, is devoid of ligand binding. Abbreviations: ER, endoplasmic
reticulum; TM, transmembrane domain; SBDLII, sterol-binding domain like-II.

Cocaine is most likely an agonist for the Sig-1R since
the cocaine effects are blocked by Sig-1R antagonists. In
contrast, Sig-1R agonists often mimic or potentiate the
effect of cocaine. METH possibly acts like an agonist at
the Sig-1R for the same reasons as cocaine does. However,
METH seemingly acts like an inverse agonist in the Sig-1R-
Bip association test (see Section 2.2). The exact biochemical
relation between METH and the Sig-1R remains to be totally
clarified.

Interestingly, subtype nonselective sigma receptor
antagonists are often more effective in inhibiting the
METH effects, suggesting that there may be some unknown
synergistic relation between Sig-1R and Sig-2R. In fact, a
number of pharmacological studies have demonstrated that
antagonists of sigma receptors, mostly Sig-1R-preferring
only or nonselective for Sig-1R and Sig-2R, attenuate the
effects of cocaine and METH in rodents. For example,
pretreatment with selective Sig-1R antagonists attenuates
hyperactivity, behavioral sensitization, and conditioned
place preference (CPP) induced by cocaine; and the
locomotor hyperactivity stimulated by METH. Also, Sig-
1R selective antagonists mitigate cellular and behavioral
toxicities induced by cocaine including convulsion and
death while nonselective antagonists counteract METH-
induced neuronal degeneration [60,61,62]. In general,
specific involvement of the Sig-2R in this regard has just
begun to be understood. For example, a selective Sig-
2R antagonist counteracts cocaine-mediated locomotion
activity [63]. However, the precise molecular mechanisms

between the actions of those two abused drugs and the roles
of sigma receptors are not fully understood.

Since the sequence of the Sig-1R is known and some
progresses for understanding the Sig-1R’s molecular func-
tions have been made, this review will focus on the Sig-
1R and the associated molecular mechanisms. At first we
will provide the biological information on Sig-1R, and then
discuss the molecular basis of the Sig-1R as it relates to the
actions of cocaine and METH including in particular the
addictive process and toxicity.

2. Biology of the Sig-1R

2.1. Structure and ligand binding

The Sig-1R is a 223 amino acid (a.a.) transmembrane pro-
tein that possesses two transmembrane domains (TMs): one
at the N-terminus (TM1: predicted as an about 20 a.a. span-
ning between residues 8 ∼ 15 and 27 ∼ 37) and the other
at the center (TM2: a.a. residues 91–107, also referred to as
sterol-binding domain like-I (SBDLI) [64]). A membrane-
attached region at the C-terminus (a.a. residues 198–206)
was suggested from solution NMR studies [13,65,66,67]
(Figure 1). The Sig-1R protein is highly conserved in var-
ious mammalian species with over 90% of similarity in the
a.a. sequence [36]. The Sig-1R shared no homology with
any of other mammalian proteins, but shares a 30% homol-
ogy with a yeast C7-C8 sterol isomerase [11]. The homol-
ogy resides mainly between the sterol-binding pocket of the
C7-C8 sterol isomerase and TM2, and a hydrophobic region
(a.a. residues 176–194, referred to as SBDLII in [64]) at the
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C-terminus of Sig-1R [11]. The homology, though limited,
suggests that the Sig-1R has affinity for sterols [68]. Palmer
et al. examined the Sig-1R-cholesterol interaction and found
that tyrosines 173, 201, and 206 play a critical role for the
Sig-1R to bind cholesterol [69]. Several sterols and lipids
have been proposed as endogenous ligands of Sig-1R. A
number of studies showed that progesterone binds to Sig-
1R and competes with sigma ligands at the physiologically
relevant concentrations [68], suggesting certain functionali-
ties in vivo [70]. By using the unique property of sigma lig-
ands in which agonists enhance the action of NMDA recep-
tor while antagonists, being devoid of effect by themselves,
block the effect caused by agonists, Bergeron et al. pro-
posed progesterone as an antagonist and dehydroepiandros-
terone (DHEA) as an agonist at the Sig-1R [71]. In addi-
tion, sphingosine [72], monoglycosylated ceramide [73], 25-
dehydroxycholesterol [74], and myristic acid [75] have been
shown to have high affinities for the Sig-1R. Further studies
are needed to clarify the physiological and functional rele-
vance of the Sig-1R-lipid interaction except for the Sig-1R-
myristic acid interaction which has been shown to play a
critical role in axon elongation [75].

Photoaffinity labeling studies combined with biochem-
ical approaches have revealed that TM2 and SBDLII are
juxtaposed to form, at least in part, the Sig-1R ligand
binding region because point mutation in TM2 causes a
decrease of the ligand binding ability [76]. The possibility
exists that TM1 is also in the proximity to SBDLII and
contributes thus to the binding of ligands [77]. A splice
variant of Sig-1R, which lacks a.a. residues 119–149, was
found to be nonfunctional in the ligand binding assay in
a Jurkat human T-lymphocyte cell line [78], suggesting
that the C-terminal region following TM2 is important
for the ligand binding to Sig-1R. Seth et al. reported
two essential a.a. residues, Asp126 and Glu172, for the
haloperidol binding to Sig-1R [41]. Since TM2 and SBDLII
are hydrophobic in nature, it is reasonable to assume that
the hydrophobicity somehow contributes to the binding
between lipids, or otherwise hydrophobic part(s) of sigma
ligands, and the Sig-1R. Additionally, the negative charge
of anionic a.a. including Asp126 and Glu172 between
TM2 and SBDLII is possibly utilized by the Sig-1R to
interact with sigma ligands that are positively charged. The
positively charged hallucinogen N ,N -dimethyltryptamine
(DMT) apparently functions at least in part through Sig-
1R even though the affinity of DMT at Sig-1R is in the
micromolar range [79]. In contrast to that seen in wild type
mice, Sig-1R knockout mice failed to respond behaviorally
to DMT [66].

2.2. Molecular chaperone activity and the ligand effects

It has been demonstrated that the C-terminus of Sig-1R has
a chaperone activity that assists proteins to fold properly to

ensure their functionality. The Sig-1R is a unique chaperone
in that it consists of two transmembrane domains and that it
is a ligand-regulated chaperone. The second transmembrane
domain, in addition to being important in ligand binding,
apparently plays an important role in Sig-1R interaction
with other transmembrane proteins [74,80]. Because the
Sig-1R chaperone, being a transmembrane itself, tends to
interact more with other transmembrane proteins including
many ion channels and receptors, it is tempting to speculate
that this cross-interaction between transmembrane regions
of a chaperone and its client protein may have an as-yet-
unknown special significance in the action of the Sig-1R
as a chaperone. Further studies are required to clarify this
seemingly important speculation.

At the endoplasmic reticulum (ER), the C-terminus of
Sig-1R faces the ER lumen and interacts with another chap-
erone protein Bip/GRP78 [13]. The Sig-1R interaction with
Bip/GRP78 prevents the Sig-1R’s chaperone activity. Sigma
agonists cause the dissociation of Bip/GRP78 from the Sig-
1R, resulting in the unleashing of the chaperone activity of
the Sig-1R. Sigma antagonists inhibit the agonist’s effect
on the Sig-1R-Bip/GRP78 interaction (Figure 2). Although
the Sig-1R is implicated in a wide variety of physiological
functions, how and why those functions specifically relate
to the chaperone activity of the Sig-1R remains to be fully
understood. The detailed molecular functions of Sig-1R as a
chaperone will be discussed later.

2.3. Intracellular localization of Sig-1R

The Sig-1R predominantly localizes in the ER where all of
the transmembrane proteins as well as lipids for most of
cellular organelles are produced. The Sig-1R is concentrated
especially in the mitochondria-associated ER membrane
(MAM). The MAM is a dynamic lipid-raft like domain in
the ER which is enriched in cholesterol and ceramides and
is thus different from a normal ER membrane [73,81]. The
interaction with lipids such as cholesterol and ceramides
may be important for the Sig-1R to localize at the MAM
since cholesterol or ceramide depletion from lipid raft
causes a decreased partitioning of the Sig-1R at the MAM.

The MAM enables metabolites and signaling molecules
to exchange between the ER and mitochondria. The
exchange plays a crucial role in various cellular functions of
physiological and pathological significance [82]. It has been
established that the MAM is the central location to regulate
lipid transfer and rapid transmission of Ca2+ signaling
between the ER and mitochondria, the latter serving to
enhance the mitochondrial bioenergetics [83]. Additionally,
the MAM is beginning to be understood as having a role
in energy metabolism, cellular survival, redox status, ER
stress, autophagy, and inflammasome signaling [84]. Recent
studies elucidating new molecular functions of Sig-1R are
closely paying attention to the cellular events at the MAM.
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Figure 2: Sig-1R chaperone activity and the ligand effects. Sig-1R resides at the MAM which is enriched in cholesterol and
ceramide. Sig-1R physically associates with Bip/GRP78 which inhibits the Sig-1R’s chaperone activity. Upon stimulation by
agonists, Sig-1R dissociates from Bip/GRP78 and chaperones misfolded proteins. Antagonists by themselves do not disrupt
the interaction between Sig-1R and Bip/GRP78 but, if pretreated before agonists, can block the Sig-1R-BiP dissociation
caused by the agonist.

In particular, the Sig-1R might contribute to the formation
of the MAM [85,86].

Although the detailed mechanisms remain to be fully
elucidated, it is believed that the Sig-1R subcellular local-
ization is dynamically changed when cells or neurons are
stimulated with Sig-1R agonists or are under cellular stress.
The mobilized Sig-1R can translocate from the ER to its
contiguous structures including the nuclear envelope, sub-
plasmalemmal ER, and even into the plasma membrane. In
fact, the existence of the Sig-1R at the plasma membrane
has been shown by using biochemical methods in the Sig-
1R transfected cells [87,88]. On the other hand, immuno-
electron microscopy studies indicate that the endogenous
Sig-1R is present at the subplasmalemmal ER but not at
the plasma membrane as seen in motor neurons and retinal
neurons [89,90]. A number of studies suggest that the Sig-
1R modulate functions of plasma membrane proteins such
as ion channels and G protein-coupled receptor through the
direct protein-protein interaction. Given what we just dis-
cussed above, it can be envisioned that there are two pos-
sible ways that the Sig-1R can regulate target proteins at
the plasma membrane: (1) Sig-1R and target proteins are
both present at the plasma membrane and can interact with
each other; (2) the Sig-1R at the subplasmalemmal ER can
interact with target proteins at the plasma membrane via

close proximity. There is also the possibility that the Sig-
1R may interact with target proteins at the ER, leading to
affecting the target protein’s function at the plasma mem-
brane. Further studies may clarify the dynamics of the Sig-
1R as it relates to its interaction with other target proteins
and their resultant subcellular localization.

3. Sig-1R-related molecular mechanisms and the actions
of cocaine and METH

3.1. Cocaine and METH

It is widely believed that cocaine and amphetamine-like
psychostimulants including METH produce the rewarding
effect by increasing dopamine (DA) transmission in the
limbic system, especially in the nucleus accumbens (NAc)
and prefrontal cortex (PFC), both relating to the ventral
tegmental area (VTA) of the brain. The resultant activation
of the dopamine receptors is also involved in the rewarding
effect. However, the dynamic downstream consequences are
not fully understood. In addition, establishing an addictive
process apparently involves other dopamine-independent
pathway(s).

It has been well known that METH causes damage
and degeneration of dopaminergic neurons in various
brain regions including striatum through various processes
such as the activation of DA receptors, oxidative and
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ER stress, and inflammation. The dopaminergic neuronal
damage induced by METH is implicated in psychosis,
memory impairment, and motor defects. Indeed, it has
been suggested that the neurodegeneration-related changes
and abnormality in morphology in substantia nigra seen
in METH abusers are associated with increased risk of
developing Parkinson’s disease that results from loss of
dopaminergic neurons. It has been also reported that METH
causes neurotoxicity to other types of neurons including
serotonergic, glutamatergic, GABAergic, and cholinergic
neurons, suggesting that interactions between dopaminergic
and the other neurotransmitter systems affects the behavioral
and neuronal responses to METH.

3.2. Regulation of intracellular Ca2+ concentration via
IP3Rs

Ca2+ is an intracellular second messenger controlling
several cellular events. The intracellular Ca2+ concentration
is tightly regulated from Ca2+ sources at the extracellular
space and at the intracellular Ca2+ stores including ER and
mitochondria. Ca2+ in the ER lumen is released via inositol
1,4,5-triphosphate receptors (IP3Rs), ryanodine receptors
(RyRs), and polycystin-2 [91]. The Sig-1R has been shown
to be involved in IP3Rs-mediated regulation of intracellular
Ca2+ concentration ((Ca2+)i). There are three different iso-
forms of IP3Rs: type 1 (IP3R1), type 2 (IP3R2), and type 3
(IP3R3). A predominant isoform usually exists in particular
cellular types, for example, IP3R1 in neurons, IP3R2 in
liver and heart, and IP3R3 in cultured cells. However, most
types of cells express two or all of the three isoforms [92].

The Sig-1R agonist was reported to enhance bradykinin-
induced elevation of (Ca2+)i most likely via IP3/IP3R3,
which is in turn inhibited by the Sig-1R antagonist in
neuroblastoma/glioma hybrid NG108 cells [93,94]. Later,
it was demonstrated that the Sig-1R and IP3R3 are both
enriched at the MAM, where the Sig-1R stabilizes IP3R3
when cells were either under ER stress due to the ER Ca2+

depletion or being stimulated by Sig-1R agonists; leading
thus to the potentiation of Ca2+ transmission from ER to
mitochondria [13].

While the IP3R3 has been proved as a client of the
Sig-1R chaperone, it remains less clear if IP3R1 and IP3R2
are also chaperoned by the Sig-1R. Nevertheless, there are
reports supporting the possibility that IP3R1 and IP3R2
are also clients of the Sig-1R chaperone. IP3R1 is enriched
at the MAM in other cell types including HeLa cells and
the rat liver tissue lysate [95]. As well, the Sig-1R is
co-immunoprecipitated with IP3R1 in hepatocytes [96].
In the heart, IP3R2 contributes to the Ca2+ influx into
mitochondria and the Sig-1R is physically associated with
IP3R2. Interestingly, the Sig-1R stimulation by the agonists
ameliorates cardiac hypertrophy and dysfunction through
the enhancement of the Sig-1R-IP3R2 interaction and by

restoring the IP3R2-mediated Ca2+ mobilization from the
ER into the mitochondria and the resultant mitochondrial
ATP production [97,98]. Recently, it was suggested that the
RyR is involved in the cardiac protective effects of Sig-1R
agonists [98,99]. Therefore, the Sig-1R may regulate a
variety of intracellular Ca2+ channels operated through both
IP3Rs and RyRs, depending on the types of cells as well as
the expression patterns of IP3R and RyR isoforms.

In agreement with previous studies [93,94], Barr et
al. recently indicated that cocaine potentiates (Ca2+)i
elevation through IP3Rs that are activated by inositol 1,4,5-
triphosphate (IP3) and adenosine triphosphate (ATP) in
dopamine D1 receptor (D1R) positive neurons in the NAc.
The report showed that this effect of cocaine is not related to
the extracellular Ca2+ [100]. This effect of cocaine is IP3R
specific and not related to RyRs, which is abolished by pre-
treatment with Sig-1R antagonists. Further, cocaine alone
did not cause the elevation of (Ca2+)i. Interestingly, indirect
activation of D1R by cocaine and amphetamine have been
shown to augment IP3 levels in the striatum via phospho-
lipase C [101]. Also, over expression of Sig-1R promotes
mitochondrial Ca2+ uptake and ATP production [85]. In
the study [100], cocaine was microinjected into cytoplasm,
suggesting that cocaine directly activates the intracellular
Sig-1R that stabilizes the IP3R function likely by chaper-
oning and causes thus the augmentation of ATP production.
It was also showed that the increase of (Ca2+)i triggers
activation of transient receptor potential canonical (TRPC)
channels that allow for the activation of D1R positive
neurons. Cocaine enhances the IP3Rs/TRPC-dependent
depolarization through the Sig-1R and this pathway
likely is involved in the cocaine-induced hyperactivity
and sensitization since the cocaine effects are attenuated by
pretreatment with the TRPC or Sig-1R inhibitor.

Recent studies suggest the involvement of IP3Rs in the
development of drug dependence. IP3Rs antagonists dose-
dependently inhibit the CPP induced by cocaine and METH.
The IP3R1 expression level is elevated in the NAc of mice
conditioned with those drugs. Further, the elevated IP3R1 is
abolished by the selective antagonist for D1R or dopamine
D2 receptors (D2R) [102,103]. One underlying mechanism
for the upregulation of the IP3R1 expression is that stimula-
tion of D1R and D2R, respectively, activates AP-1/NFATc4-
dependent IP3R1 gene transcription [104,105]. This DA-
dependent elevation of IP3R1 expression apparently is a key
step to develop CPP induced by cocaine and METH.

Taken together, the above results suggest that during a
CPP test cocaine or METH causes an indirect stimulation
of D1R and D2R and the resultant upregulation of IP3R1
expression which may thus lead to the elevation of (Ca2+)i.
Interestingly, the Sig-1R mRNA and Sig-1R ligand binding
activity in the NAc of cocaine-conditioned mice are
concomitantly increased [106,107]. Thus, cocaine may
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stimulate the Sig-1R chaperone activity at the ER, leading
to the enhancement of the Ca2+ release via IP3Rs and
the ultimate increase of ATP in the mitochondria. Sig-1R
specific agonists alone are not sufficient to develop CPP.
Yet, the DAT inhibitor-induced CPP is attenuated by Sig-
1R antagonists [106], suggesting that the DA-dependent
upregulation of IP3R1 might be critical for the Sig-1R’s
role in the acquisition of drug-induced CPP. Involvement of
Sig-1R, IP3Rs, and D1R in the acquisition of CPP induced
by cocaine is physiologically relevant since the antagonists
for those receptors block the CPP [102,103,106,108,109,
110]. The effect of Sig-1R antagonist on METH-induced
CPP has not been reported so far.

3.3. Regulation of potassium channels

It has been documented that repeated cocaine treatment
persistently decreases the intrinsic excitability of the
NAc medium spiny neurons (MSNs) by increasing the
outward K+ current, leading to a long-lasting behavioral
sensitization to cocaine. This process is believed to
contribute to rewarding effects of cocaine and possibly
to the development of the addictive processes to cocaine.

Cocaine-induced increase of K+ current is postulated
to be dependent on slowly-inactivating D-type (D-type)
and SK-type Ca2+-activated (SK) K+ currents. Although
modulation of SK channels by Sig-1R agonists has been
reported [111], the recent study has clarified that the
Sig-1R is involved specifically in the increase of D-type
K+ current mediated by chronic cocaine treatment [88].
The Sig-1R modulates D-type K+ current through physical
association with Kv1.2, one of K+ channels through physical
interaction. Cocaine increases the interaction between Sig-
1R and Kv1.2 likely in the plasma membrane due to an
increased Kv1.2 in the plasma membrane as a consequence
of the activation and translocation of Sig-1R from the ER
to the plasma membrane. This possibility is supported
by the fact that protein expression levels of Sig-1R and
Kv1.2 are not changed. Consistently, the Sig-1R antagonist
and knockdown of Sig-1R prevent the cocaine-elicited
increase of the D-type K+ current and associated behavioral
sensitization [88].

3.4. Regulation of gene transcription

It has been recognized that cocaine influences gene
regulations that affect the neuronal plasticity and behavior.
The nuclear envelope comprises two membranes called the
inner and outer nuclear membranes and the Sig-1R has
been detected in both membranes in retinal neurons [90]. In
recent years, it has been revealed that nuclear envelopes play
a role in chromatin organization and gene regulation [112].
Results of a recent study [113] demonstrated that the
Sig-1R in the nuclear envelope is related to the cocaine-
induced gene regulation. Upon cocaine stimulation, the

Sig-1R translocates to the nuclear envelope and, as a result,
increases the interaction with nuclear envelope integral
proteins lamin A/C and emerin. Cocaine intensifies the
interactions between emerin, histone deacetylase (HDAC),
and barrier-to-auto autointegration factor (BAF) in a Sig-
1R-dependent manner. Emerin has been reported to affect
epigenetic gene regulation through its binding to HDAC.
BAF apparently assists emerin in the tethering of chromatin
to the nuclear envelope. Cocaine thus utilizes the Sig-1R to
promote the formation of a chromatin remodeling complex
consisting of emerin/HDAC/BAF, and enhances its binding
to the monoamine oxidase B (MAOB) promoter perhaps
near the nuclear envelope. The nuclear periphery, where Sig-
1R apparently forms the chromatin-remodeling complex, is
somehow regarded as transcriptionally silent [112]. How-
ever, the Sig-1R knockdown increases the mRNA expres-
sion of MAOB [114] and this effect of the Sig-1R relates to
its location and ability at the nuclear envelope [100]. There-
fore, the Sig-1R at the nuclear envelope serves as the func-
tional connection between the nuclear envelope and DNA.
Thus, the stimulation of the Sig-1R by acute cocaine treat-
ment causes the decreases of the MAOB protein expression
via the suppression of the MAOB gene transcription in the
prefrontal cortex and NAc in mice [100]. Together, those
data indicate that the Sig-1R at the nuclear envelopes plays a
role in the cocaine-mediated transcriptional downregulation
of MAOB [113]. The MAOB is a DA degrading enzyme
and is possibly involved in behavioral effects of cocaine. In
fact, chronic pretreatment with a MAOB inhibitor prevents
the establishment of cocaine self-administration [115].
Further, the MAOB inhibitor suppresses the prolonged
behavioral sensitization induced by cocaine during cocaine-
withdrawal [113]. However, the temporal pattern of the
Sig-1R-related recruitment of chromatin-remodeling factors
during the chronic cocaine treatment and after cocaine
withdrawal remains to be fully clarified.

3.5. Regulation of reactive oxygen species signaling

Emerging evidence supports the possibility that the Sig-1R
is involved in the generation of reactive oxygen species
(ROS). It has been documented that the production of
the NADPH-induced ROS is increased in the Sig-1R
knockdown neurons [116]. Further, an elevated level of
ROS is seen in the retinal Müller cells of Sig-1R knockout
(KO) mice when compared to controls [117]. Additionally,
the Sig-1R inversely regulates the ROS/nuclear factor kappa
B (NFκB)-dependent pathway. Thus, it was shown that
the Sig-1R upregulates the Bcl-2 gene transcription in as
much as the Bcl-2 transcription is downregulated by the
ROS/NFκB pathway [118]. Bcl-2 is a well-characterized
antiapoptotic regulator and is also known to suppress
autophagy by inhibiting Beclin 1, an autophagy inducing
protein [119].
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The ROS in cells is generated both in the mitochondria
and ER, and the generation of ROS is affected by Ca2+

signaling and the converse is true. As mentioned before, the
Sig-1R regulates the Ca2+ release from the ER and its influx
to the mitochondria via IP3R3 [13]. As a consequence the
Sig-1R may thus affect the mitochondrial ROS production.
On the other hand, in Müller cells of Sig-1R KO mice,
the expression of Nrf-2 gene, a transcriptional activator
for antioxidant proteins, is downregulated, causing thus
a decrease in antioxidant proteins such as SOD1, and
catalase, as well as xCT that is important for generating the
antioxidant glutathione [117]. Another potential mechanism
might be related to the Sig-1R-induced downregulation
of MAOB. Tyramine, an MAO substrate, induces the
production of H2O2, a ROS, which in turn could be inhibited
by MAOA or MAOB inhibitor depending on the MAO
isoforms expressed in the types of cells [120]. Collectively,
the Sig-1R may control the ROS generation by regulating
Ca2+ signaling from the ER into the mitochondria, and by
regulating genes of ROS modulating factors such as SOD1,
catalase, xCT, and MAOB. Further studies will be needed
to fully elucidate the detailed mechanisms however.

Downstream of the ROS generated from mitochondria,
there exists the IRE1 which is one of the ER stress sen-
sors residing specifically at the MAM. Once activated, IRE1
causes the transcriptional upregulation of several ER chap-
erons in order to counteract the ROS-induced stress. In this
mitochondrion-ER-nucleus signaling pathway, it is known
that the Sig-1R chaperones IRE1 to maintain its proper fold-
ing, thus promoting the cellular survival [80]. Although evi-
dence in terms of the Sig-1R’s direct role in the generation or
inhibition of ROS is lacking, indirect evidences mentioned
above, including data from the Sig-1R knockdown and KO
mice as well as the Sig-1R’s cellular protecting function on
the IRE1 downstream of the mitochondrial ROS, suggest
that the Sig-1R apparently plays a protective role against the
ROS insults under normal physiological conditions.

Previous reports have shown conflicting results regard-
ing the effect of Sig-1R agonists and antagonists on the
ROS generation. Sig-1R agonists increase the production
of ROS and Sig-1R antagonists inhibit the agonist effect in
the spinal cord and brain mitochondria [121,122]. On the
other hand, a Sig-1R agonist, (+)-pentazocine, decreases
ROS production induced by lipopolysaccharide (LPS) in
retinal microglia [123]. Those results suggest that the Sig-
1R agonist alone seems to enhance the ROS generation.
However, this effect of the Sig-1R agonist may change
depending on conditions for example when in the presence
of other ROS inducers like LPS.

Yao et al. have indicated that the Sig-1R is directly
involved in the cocaine effect on the ROS generation in
microglia [124]. They postulated that cocaine induces the
ROS generation by hijacking Sig-1Rs to the lipid raft at the

plasma membrane and sequentially activating the MAPKs,
PI3K/Akt and NFκB pathways. Further, Sig-1R antagonist
and knockdown of the Sig-1R attenuate the ROS production
and the activation of those pathways. Additionally, this
Sig-1R-mediated ROS induction is critical for cocaine to
increase the monocyte chemoattractant protein-1 (MCP1)
expression. MCP1 is the key CC chemokine to mediate
monocyte-macrophage transmigration across the blood
brain barrier (BBB). Consistently, cocaine enhances the
monocyte migration into the brain in cocaine treated
mice, an effect which is ameliorated by the Sig-1R
antagonist. Thus, the Sig-1R-mediated ROS generation
may explain at least in part how cocaine abusers with
HIV-1 infection show a BBB disruption and a higher risk of
neuroinflammation.

Acute and repeated cocaine administration have
been described to induce the ROS production in the
PFC and striatum in rats, an effect which is usually
accompanied by increases of antioxidant enzymatic
activities [125]. No significant apoptosis is observed
probably because the activated antioxidant enzymes
counteract the cocaine-induced oxidative stress. A very
recent study has indicated that cocaine-induced ROS is
involved in cocaine self-administration [126]. Pre- and
post-treatment of ROS scavengers in the NAc reverses the
cocaine self-administration without affecting food intake
in rats. The report also found that the oxidative stress is
activated mainly in neurons in cocaine self-administering
rats, and that ROS scavengers suppress the cocaine-
induced increase of DA in the NAc apparently without
the involvement of dopamine transporter (DAT). Together,
it is suggested that cocaine stimulates the ROS production in
the NAc neurons that leads partly to the increase of DA and
the subsequent expression of cocaine-self administration.

It has been demonstrated that Sig-1R antagonists alone
do not affect the cocaine self-administration. Typical DAT
inhibitors are known to shift the cocaine dose-effect curve
to the left. However, combination of Sig-1R antagonists and
DAT inhibitors decreases cocaine self-administration [127].
Underlying molecular mechanisms in this regard are largely
unknown. Whether the Sig-1R-related ROS-dependent
pathway may be involved in the self-administration of
cocaine is also not known at present. Similar to cocaine
self-administration, it has been reported that METH self-
administration is attenuated by dual inhibition of DAT and
sigma receptors [128].

Previous studies have provided evidence that the ROS
signaling plays important roles in the effects of METH in
vivo and in vitro. It was shown that METH increases the
ROS production via various pathways [129,130] including
the inhibition of mitochondrial functions [131] and the
stimulation of the NADPH oxidase (NOX) activity [132].
METH-induced ROS production is implicated in METH
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effects on neuronal degeneration [133,134], toxicity in
various cell types [135,136], behavioral hyperactivity [137,
138], and hyperthermia [139,140]. Notably, ROS-reducing
agents including ROS scavengers and NOX inhibitors
attenuate those effects of METH.

Specific involvement of the Sig-1R in the action of
METH has been demonstrated in the METH-induced
locomotor activity as well as in behavioral sensitization.
Selective Sig-1R antagonists or Sig-1R antisense decrease
the behavioral response caused by METH [22,141]. On the
other hand, METH-induced ROS generation, apoptosis
(at μM concentration), necrotic cell deaths (at mM
concentration), or DA release is inhibited by subtype
nonselective sigma antagonists in differentiated NG108-15
cells [142,143]. Interestingly, 1,3-di(2-tolyl)-guanidine
(DTG), a sigma agonist, shifts the METH dose-response
curve to the left in the METH-induced cell death. In mice,
sigma antagonists block the METH-induced hyperthermia
and damage in dopaminergic and serotonergic neurons
as seen in the depletion of dopamine and serotonin,
and the reduction of the transporters in the striatum in
addition to blocking the locomotor activity and memory
impairment caused by METH [144,145,146,147]. It should
be mentioned that METH-induced hyperthermia apparently
exacerbates the neuronal toxicity of METH [143,148].
The Sig-1R’s specific role in the molecular mechanism
underlying the METH-induced effects is unknown at
present. However, it is conceivable that the Sig-1R may play
a role in the neuronal and behavioral effects of METH by
regulating the ROS signaling.

3.6. Regulation of autophagy

Autophagy is a lysosomal degradation pathway responsi-
ble for the turnover of cellular organelles and larger pro-
tein aggregates whose sizes are beyond that the proteasome
can handle. The autophagy process includes the sequestra-
tion of cytoplasmic components within a double-membrane
compartment (autophagosome) and the subsequent fusion of
autophagosome with lysosomes, followed by degradation.
Autophagy can be prosurvival and prodeath depending on
the cellular types and conditions.

Recently, a couple of studies have demonstrated the
involvement of the Sig-1R in the process of autophagy.
Knockdown of the Sig-1R impairs the fusion between
autophagosome and lysosomes, thus leading to the
accumulation of autophagosome. The accumulation of
autophagosome is implicated in ALS, one of Sig-1R-
related neurodegenerative disease [86]. Cao et al. recently
demonstrated the cocaine-induced autophagy and suggested
that the Sig-1R plays a role in the cocaine-induced
autophagy in a mammalian target of rapamycin (mTOR)
and Beclin-1-dependent manner in astrocytes which are
the most abundant cell type in the brain that supports

neuronal survival. The report showed that the knockdown
of Sig-1R or a Sig-1R antagonist attenuates the cocaine-
induced autophagy [149]. Cocaine-induced autophagy
causes the apoptosis-independent cell death and may thus
be implicated in the neuronal toxicity of cocaine.

It has been reported that cocaine is capable of stim-
ulating inflammatory responses in the CNS by activating
microglia. In response to prolonged exposure to cocaine,
activated microglia produces cytokine, chemokine, and
neurotoxic factors that can cause neuronal damage and
dysfunction. A recent study showed that autophagy is
involved in the cocaine-induced activation of microglia.
Cocaine mediates the ROS production and ER stress
whereby inducing autophagy that stimulates the production
and secretion of proinflammatory factors in microglial cells.
Indeed, induction of autophagy by cocaine is indicated by
increased levels of autophagy markers, BECN1, ATG5, and
MAP1LC3B-II, in the brain of mice repeatedly treated with
cocaine [150]. Thus, the cocaine-induced ROS generation
leads to autophagy that activates microglia. Whether the
cocaine-induced microglial activation may involve the
Sig-1R is unknown at present.

METH-induced autophagy is often tested in dopamin-
ergic neurons because the disruption of dopaminergic
system is a key effect of METH. Micromolar concentrations
of METH, which do not kill cells, induce autophagy to
protect cells from apoptosis [151,152]. This autophagy
as such is speculated as an early cellular response to
METH intoxication. High concentrations (mM) of METH,
however, induce autophagy in a ROS-dependent manner,
leading to the activation of apoptosis and cell death [153,
154,155]. Thus, the moderate induction of autophagy by
nontoxic concentration of METH is prosurvival whereas
excess METH activates the autophagy that kills cells. Sigma
antagonists have been shown to be protective against the
METH-induced neuronal damage in vivo and in vitro [144,
145,146,147]. Thus, the Sig-1R may participate in the
METH-induced neuronal damages by the Sig-1R’s ability
to regulate autophagy via mechanisms as mentioned above.

4. Conclusions

The exact molecular mechanisms of actions of psychos-
timulants remain largely unknown even though behavioral
and pharmacological studies have rapidly advanced in this
field. As such, there is no effective medication against
psychostimulant-related disorders at present. It is apparent
that targeting monoamine systems alone may not be enough
to develop effective treatments. The Sig-1R has been
implicated in the actions of psychostimulants including
cocaine and METH and is expected to be a potential target
for treatment development.

The Sig-1R has a wide variety of functions in the cell.
Those functions regulated by the Sig-1R include the protein
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Figure 3: Potential Sig-1R-involved molecular mechanisms in the actions of cocaine and METH. Cocaine dissociates Sig-
1R from Bip/GRP78 and activates the chaperone activity of Sig-1R. Sig-1R stabilizes IP3R leading to the increase of
intracellular calcium concentration. Cocaine induces the translocation of Sig-1R from ER to the plasma membrane and
the nuclear envelope, thus intensifying Sig-1R interaction with target proteins. At the plasma membrane, Sig-1R modulates
the function of potassium channels by interacting with Kv1.2 subunit. At the nuclear envelope, cocaine through Sig-1R can
promote the formation of the chromatin remodeling complex composed of emerin/HDAC/BAF that binds to suppress the
gene transcription of MAOB. Cocaine or METH induces the ROS production and autophagy which can be inhibited by
sigma receptor antagonists. Abbreviations: ER, endoplasmic reticulum; Mito, mitochondria; DA, dopamine; D1R, dopamine
D1 receptor; TRPC, transient receptor potential canonical; IP3, inositol 1,4,5-triphosphate; IP3R, IP3 receptor; ROS, reactive
oxygen species; ATP, adenosine triphosphate; BAF, barrier-to-auto autointegration factor; HDAC, histone deacetylase;
MAOB, monoamine oxidase B; [Ca2+]i, intracellular Ca2+ concentration; [Ca2+]mito, mitochondrion Ca2+ concentration.

stability, intracellular Ca2+ signaling, gene transcription, ER
and oxidative stress signaling, protein degradation by the
ER-associated protein degradation, and autophagy. In turn,
those cellular functions could be affected by cocaine and
METH via the involvement of the Sig-1R, eventually lead-
ing to functional alterations or damage in the cell.

It has been suggested that the Sig-1R may relate to
the abuse of ethanol and nicotine. Although the Sig-1R
itself does not bind ethanol or nicotine, the Sig-1R ligands
modulate behavioral responses to ethanol and nicotine.
Perhaps the Sig-1R may indirectly participate in the

addictive processes of ethanol or nicotine in a manner
which has yet to be unveiled.

In summary, the exact roles of the Sig-1R in the actions
of psychostimulants or other abused substances await to be
fully understood (Figure 3). Understanding the mechanism
of actions for the Sig-1R in its full spectrum will certainly
advance our understanding of this unique receptor and its
exact roles in the actions of cocaine and METH in particular,
but perhaps also other substances of abuse as well.
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