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Abstract

Parkinson’s Disease (PD) is a complex neurodegenerative disorder 
characterized by the progressive loss of dopaminergic neurons in the 
nigrostriatal pathway, leading to both motor and non-motor symptoms. 
Recent insights have expanded our understanding of PD beyond its 
classical motor presentations, highlighting the significant role of 
neuroinflammation in its pathogenesis and progression. This review 
explores the multifaceted relationship between neuroinflammatory 
processes, the immune response, and the onset of PD. It discusses the 
involvement of both innate and adaptive immunity specifically the 
activation of microglia and the role of T and B cells in the degeneration 
of dopaminergic neurons. Additionally, we examine how genetic 
predispositions, environmental factors, and viral infections may 
contribute to inflammation and ultimately neurodegeneration. We delve 
into the implications of chronic inflammation, emphasizing its potential 
as a therapeutic target and a source of biomarkers for early diagnosis 
and progression monitoring. Recent therapeutic approaches, including 
immunotherapies targeting α-synuclein, present promising avenues for 
intervention. Overall, this review underscores the intricate interplay 
between neuroinflammation and the pathophysiology of Parkinson’s 
disease, advocating for a deeper exploration of inflammatory pathways 
as both contributors to and markers of disease progression.
Keywords: Parkinson’s disease; B cells; Disease progression; 
Pathophysiology

Introduction

PD is a prevalent neurodegenerative condition primarily 
marked by a decline in motor functions, stemming from 
damage to the dopaminergic nigrostriatal pathway. This 
damage involves the death of dopamine-producing neurons 
that extend from the substantia nigra pars compacta to 
the striatum’s caudate-putamen, leading to a decrease in 
dopamine neurotransmission. The main motor symptoms 
include rest tremors, slowed movements (bradykinesia), 

stiffness (rigidity), and balance issues (postural instability) 
[1-3]. Initially, PD was identified solely as a movement 
disorder without any cognitive decline, but it is now 
recognized that PD’s progression also impacts other brain 
pathways, leading to non-motor symptoms such as loss 
of smell (anosmia), sleep disturbances, constipation, and 
cognitive and emotional issues, including dementia and 
depression [4,5].

The disease begins years before the first symptoms 
manifest, but the exact cause of the neuronal death is still 
not fully understood. Genetic factors account for 5%-
10% of PD cases, with mutations in specific genes (such 
as PARK genes, alpha-Synuclein, DJ-1, PINK, LRRK2) 
leading to an early onset of the disease. However, the 
majority of PD cases are idiopathic, with a link to aging 
[6-10]. Environmental risk factors, including exposure to 
toxins, pesticides, heavy metals, injuries, and infections, 
have been associated with PD, particularly through 
their role in promoting inflammation. The connection 
between inflammation and Parkinsonian symptoms has 
been explored since the observation of Parkinson-like 
symptoms in individuals with influenza virus infections 
(encephalitis lethargica) [11-13]. Subsequent research 
has linked PD onset to various viral pathogens, including 
influenza A, Herpes Simplex Virus-1 (HSV-1), Ebola virus, 
and others, suggesting that these pathogens may reach the 
brain through the nasal or intestinal pathways, triggering 
neuroinflammatory and neurodegenerative processes in the 
nigrostriatal pathway [14-16].

Interestingly, some viral proteins, such as those from HSV-
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1 and EBV, can mimic alpha-Synuclein (α-Syn), leading to 
its aggregation and the formation of Lewy bodies, which 
are characteristic of PD. Additionally, α-Syn plays a role 
in attracting immune cells like neutrophils and monocytes 
in response to viral infections, indicating its involvement 
in both systemic and brain inflammatory responses in PD’s 
development [17-21].

Inflammation serves as a critical defense mechanism against 
harmful pathogens or injury, designed to shield the body 
from harmful agents and aid in tissue healing. Traditionally, 
the Central Nervous System (CNS) was viewed as immune-
privileged due to the Blood-Brain Barrier (BBB) isolating 
it from the body’s general immune system. However, this 
view has evolved. 

The CNS can indeed mount a strong innate immune 
response to Pathogen-Associated Molecular Patterns 
(PAMPs) and Damage-Associated Molecular Patterns 
(DAMPs) [22-24]. Normally, microglia and astroglia patrol 
the brain’s environment to keep the CNS in balance by 
releasing growth factors, clearing away excess glutamate, 
and modifying synapses, among other tasks. Yet, these glial 
cells can become activated by PAMPs and DAMPs, like 
those from injured neurons or protein clumps, leading to 
ongoing neuroinflammation. While not always the initial 
cause, chronic neuroinflammation is increasingly seen as a 
contributing factor in the progression of PD [25-29].

Further discussions and a wealth of data from human 
studies and animal research highlight inflammation’s role 
in PD’s onset. The precise catalyst for this inflammatory 
response is still uncertain. It’s possible that inflammation 
results from the continuous death of neuronal cells in PD, 
but the misfolding of α-Synuclein could also have a direct 
impact [30-33]. 

Beyond the significant microgliosis and astrogliosis 
observed in PD-affected brains, peripheral inflammation 
and genes linked to PD risk underscore the significant role 
of chronic inflammation in the disease’s advancement. This 
article will offer a comprehensive review of the cellular and 
molecular players in neuroinflammation and their potential 
effects on the progression of PD [34-38].
Inflammation in PD: Pathogenesis and progression

Age stands as the most significant risk factor for numerous 
neurodegenerative diseases, yet the aging immune system’s 
role is often overlooked and insufficiently researched in 
the context of neurodegeneration. Immunosenescence, 
the aging of the immune system, is marked by two main 
aspects: An age-related decline in immune function and 
inflammaging. Inflammaging refers to the chronic, low-
grade increase in circulating inflammatory mediators or 
cytokines, particularly C-Reactive Protein (CRP), IL-6, and 
Tumor Necrosis Factor (TNF), produced by persistently 
activated immune cells. Both the innate and adaptive 
branches of the immune system deteriorate with age and 
exhibit notable changes in PD [39-42].

Innate immunity

Microglia are found in high numbers in the substantia nigra 
pars compacta and striatum within the brain, both of which 
are impacted by PD. An early indication of the connection 
between neuroinflammation and PD’s development was 
presented in 1988, when researchers discovered HLA-DR+ 
reactive microglia in the post-mortem brain tissue of PD 
patients. The presence of HLA-DR+ microglia escalates 
alongside neuronal degeneration in the nigrostriatal 
pathway. These activated microglia contribute to increased 
levels of TNF, IL-1β, TGFβ, IL-6, Reactive Oxygen 
Species (ROS), nitric oxide species, and pro-apoptotic 
proteins in the substantia nigra pars compacta, striatum, 
and Cerebrospinal Fluid (CSF) of PD patients [43-45]. The 
activity of microglia in living patients has been studied 
using Positron Emission Tomography (PET) with specific 
ligands to trace neuroinflammation in PD brains. Ligands 
like 11C-PK11195, targeting the Translocator Protein 
(TSPO), have indicated heightened microglial activity in 
PD brains, although this activity does not directly correlate 
with the clinical severity. This method has led researchers 
to believe that microglia activation occurs early in PD, 
contributing to neuroinflammation in areas prone to PD 
[46-50]. However, the reliability and interpretation of 
TSPO radioligand binding face challenges like TSPO 
polymorphisms with second-generation ligands, low TSPO 
density in healthy brains, and expression in multiple cell 
types, including peripheral cells. Therefore, new targets are 
needed for better specificity and understanding of microglia 
function [51-53].

Traditionally, microglia in neurodegenerative regions were 
labeled as ‘activated’ due to their ameboid shape, suggesting 
a harmful inflammatory state. Yet, current evidence shows 
that microglia exhibit a range of behaviors and play various 
roles in PD’s pathology. For instance, microglia can 
cause neuronal death by producing inflammatory factors, 
interact with α-synuclein to promote its aggregation, or 
alternatively, offer protection through the production of 
neurotrophic factors [54-58]. Dysfunctional phagocytosis 
in glial cells, resulting from PD-related genetic mutations, 
may contribute to microgliosis and neuroinflammation. 
Extracellular α-synuclein can activate microglia in a manner 
dependent on its conformation and specific mutations, with 
fibrils and mutations linked to early-onset PD eliciting 
strong immune responses in BV2 microglial-like cells 
[59,60]. The NLRP3 inflammasome signaling in microglia, 
a complex involved in promoting an inflammatory state, 
is activated by α-synuclein in PD models. Different 
α-synuclein variants trigger specific NLRP3 inflammasome 
responses in microglia, including α-synuclein breakdown, 
highlighting its potential significance in PD [61-64].

Beyond microglia, monocytes also play a role in the 
development of diseases. Specifically, within the monocyte 
group, the proportion of classical CD14+CD16- monocytes 
is higher in individuals with PD, and these cells exhibit 
changes in their gene expression. One notable change is the 
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increased expression of CC-chemokine Ligand 2 (CCL2), 
indicating a rise in monocyte recruitment and inflammation 
in PD patients [65-69]. Additionally, levels of Leucine-Rich 
Repeat Kinase 2 (LRRK2) are higher in monocytes from 
PD patients, which is linked to abnormalities in monocyte 
function. Early stages of the disease show unique monocyte 
gene expression profiles, including genes related to immune 
response such as HLA-DQB1, MYD88, REL, and TNF. More 
recent studies, including a transcriptome-wide association 
study, have identified connections between genes related to 
lysosomal functions and innate immune responses in the 
dorsolateral prefrontal cortex and peripheral monocytes, 
highlighting them as risk factors for PD [70-72].
Adaptive immunity

Substantial evidence points to the involvement of adaptive 
immunity in the development of diseases. In an initial study 
that discovered HLA-DR+ microglia in the brains of PD 
patients, researchers found that CD3+ T cells were present 
in the brains of these patients, a finding that has been 
confirmed by further research and in animal studies. Later 
research has delved into the specific types of T cells in the 
brain and their peripheral counterparts to better understand 
their contribution to the inflammatory processes linked to 
PD. In the brains of PD patients, higher levels of CD4+ and 
CD8+ T cells were observed in the substantia nigra pars 
compacta compared to controls [73-76]. In the bloodstream, 
numerous studies, including a meta-analysis involving 943 
PD cases, have noted a decrease in circulating CD4+ T cells 
among patients. More precisely, increases in HLA-DR+ T 
cells and CD45RO+ memory T cells have been observed in 
PD patients compared to healthy individuals, whereas naive 
CD4+ T cells were found to be lower, and the frequency of 
CD25+ regulatory T (Treg) cells has shown inconsistent 
results. In PD patients, CD4+FOXP3+ Treg cells exhibit 
heightened suppressive capabilities. This is in line with the 
discovery that dopamine, which PD patients lack, reduces 
Treg cell functionality [77-80]. However, functional studies 
have not shown a difference in T cell activity between 
patients receiving dopamine-replacement therapy and those 
who are not, indicating that dopaminergic medications 
might not influence T cell behavior. Interestingly, the 
severity of PD in patients has been linked to the expression 
of specific dopamine receptors on T cell subsets, suggesting 
a possible role for immune cell dopamine receptors in the 
disease’s development or progression. The dysregulation 
of T cells in PD is indicated by their increased expression 
of TNF receptors and the elevated production of IFNγ and 
TNF by effector T cells, despite the presence of Treg cells 
[81-84]. During a comprehensive study it was proposed that 
in PD patients, certain T cell subsets, particularly CD4+ 
T cells, recognize specific α-synuclein peptides, further 
underscoring the significance of adaptive immunity in PD 
pathology. More recent research has linked α-synuclein 
T cell reactivity in peripheral blood mononuclear cells 
with preclinical and early motor stages of PD, suggesting 
that tracking this could allow for earlier disease detection 
in susceptible individuals [85-89]. Although there are 

inconsistencies in the findings regarding T cell dysregulation 
and their roles in PD pathology, some of this variation 
might be attributed to the diverse nature of the studied 
patient groups. Nonetheless, it is evident that disruptions in 
immune cell movement can foster an inflammatory setting 
conducive to the neuronal death seen in PD [90-93].

The understanding of B cells’ involvement in PD is still 
developing, with ongoing research into their role. Studies 
indicate a decrease in B cell numbers in the blood of PD 
patients compared to healthy individuals, although these 
results vary between studies. There have been discoveries 
of IgG deposits on the brain’s dopaminergic neurons 
and the presence of the IgG receptor FcγRI on activated 
microglia, hinting at the involvement of humoral immunity 
in neuroinflammation and neurodegeneration [94-97]. 
Furthermore, autoantibodies targeting α-synuclein, 
dopamine, and melanin have been identified in the serum 
and CSF of PD patients. The concentration of α-synuclein 
autoantibodies in the CSF and plasma of patients with 
mild or moderate PD has been linked to the severity of the 
disease, suggesting these autoantibodies might be useful 
as biomarkers for PD. Previous infections could trigger 
the production of these autoantibodies through a process 
known as molecular mimicry, as proposed for infections 
like HSV1 and Helicobacter pylori [98,99].
Microglia activation

Microglia are the brain’s immune cells, playing roles in 
both protecting and potentially harming the nervous system. 
In a healthy state, these cells patrol the CNS, looking for 
signs of danger while maintaining balance and releasing 
growth-supporting factors like NGF and basic Fibroblast 
Growth Factor (bFGF). They can be activated by a variety 
of antigens, including infectious agents, foreign bodies, 
prions, abnormal CNS proteins, aggregates, and dying 
cells. Common triggers for microglia activation include 
Interferon (IFN)-γ, β-Amyloid (Aβ), lipopolysaccharide 
(LPS), and α-synuclein, both in laboratory settings and in 
living organisms [100-102].

Activated microglia have been implicated in the 
neuroinflammation observed in PD, as evidenced by studies 
in both tissue cultures and animal models. Autopsies of 
PD patients have shown significant microglial activation, 
particularly through the increased expression of HLA-
DR, a specific immune system receptor, in brain regions 
most affected by the disease, such as the Substantia Nigra 
pars compacta (SNpc). These HLA molecules, presented 
by Dopamine (DA) neurons, display processed antigenic 
peptides to CD4+ T lymphocytes [103-105]. While neurons 
typically do not express MHC molecules, those in the 
substantia nigra and Locus Coeruleus (LC) have been 
found to do so following IFNγ exposure. This, combined 
with the BBB becoming permeable to CD4+ and CD8+ T 
cells, might explain the pathological observations in PD 
brains. Additionally, activated microglia release various 
inflammatory mediators like TNFα, IL-6, NOS2, COX2, 
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pathology, such as neurofibrillary tangles and the loss of 
DA neurons in the substantia nigra, hinted at a possible 
causative relationship, despite the absence of Lewy body 
inclusions [118-120].

Animal studies, particularly with the H5N1 influenza virus, 
have shown similar pathological outcomes. The spread 
of H5N1 from the peripheral to the CNS triggers specific 
immune responses leading to the degeneration of DA 
neurons. Although this dopaminergic loss was temporary, 
the resulting inflammation lasted much longer [121,122].

In studies involving the H1N1 virus, which does not 
typically affect the nervous system in mice, an inflammatory 
response begins in the body and then moves to the CNS, 
leading to neurodegeneration and protein aggregation. 
Further research using mice infected with H1N1 and treated 
with MPTP, a neurotoxin, showed increased microglia 
activation and subsequent degeneration. Importantly, this 
study demonstrated that administering an H1N1 vaccine 
or antiviral treatment could limit inflammation to the areas 
affected by the MPTP, significantly reducing the impact of 
H1N1 [123-127].

Research over the last ten years has explored how immune 
responses to HSV-1 affect individuals with PD, particularly 
looking at how prior infections influence PD progression. 
Studies have shown that antigens from HSV-1 can activate 
T-cells and B-cells that also respond to antigens from 
a-synuclein. This suggests a potential molecular mimicry 
between HSV-1 and a-synuclein in the dopamine-producing 
neurons of the SNpc. Research into the immune response 
has found that people with PD have higher levels of 
antibodies against HSV-1 and against a-synuclein peptides 
that resemble viral epitopes, compared to those without PD 
[128-130].

Similarly, the relationship between Epstein-Barr Virus 
(EBV) infection and PD has been examined. Epidemiological 
data indicate that people with PD are more likely to have 
been infected with EBV than the general population. 
Studies suggest a molecular mimicry mechanism here as 
well, with antibodies against EBV’s Latent Membrane 
Protein 1 (LMP1) in genetically susceptible individuals 
also reacting with a similar epitope on a-synuclein, leading 
to its oligomerization. Neurohistological examinations 
have found immunoglobulins close to dopamine-producing 
neurons in the brains of PD patients, hinting at interactions 
between microglia and B lymphocytes [131-135].
Autoimmunity and the role of A-Synuclein

Alpha-synuclein aggregates primarily accumulate in 
the SNpc in PD, but they are also present in neurons 
across the CNS, the Peripheral Nervous System (PNS), 
sympathetic ganglia, and the intestinal myenteric plexus. 
Furthermore, mutations in the SNCA gene, which encodes 
for α-synuclein, are linked to hereditary forms of PD. Lewy 
bodies, which are highly structured α-synuclein aggregates 
that also contain ubiquitin and various cellular proteins, are 

and ROS, which facilitate the presentation of new antigens 
to CD4+ T cells through the MHC-II pathway, leading to 
cell proliferation, gradual degeneration, and ultimately the 
death of DA neurons [106,107]. This phenomenon has been 
observed in rat models of PD and confirmed through PET 
imaging in living PD patients. Thus, chronic activation 
of microglia in PD may worsen the disease by producing 
excessive pro-inflammatory and cytotoxic factors, which 
could serve as potential biomarkers for early diagnosis 
and monitoring of PD progression. Conversely, a recent 
study in mice highlighted the protective role of microglia 
in clearing α-synuclein released by neurons, underscoring 
their complex role in the brain’s immune response [108-
110].
Specific cytokine signaling in PD

The involvement of cytokines such as IL-1α, IL2, IL-1β, 
TNF-α, IL-6, TGF-β, and IFNγ in the deterioration of DA 
neurons within the SNpc has been linked to microglia 
activation. This activation leads to an increase in pro-
inflammatory cytokines, signaling an immune response to 
DA neuron damage. Research analyzing CSF and blood 
from patients with PD predominantly reveals higher levels 
of IL-1β and IL-6 in serum and an increase in TGF-β in 
CSF [111,112]. Additionally, a significant rise in IL-6 
mRNA expression in the hippocampus of PD patients also 
experiencing dementia was observed. In terms of TNF-α, 
blocking soluble TNF signaling through the administration 
of the recombinant dominant-negative TNF inhibitor 
XENP345 resulted in the preservation of about 50% of DA 
neurons in various animal studies [113,114].

IL9, another cytokine implicated in PD’s development, 
serves both pro-inflammatory and regulatory roles, varying 
by the context of induction and the cell type producing 
it. It affects various cell types within the immune system 
and the CNS, with Th9 cells/IL9 signaling linked to 
neurodegeneration and autoimmune diseases of the CNS. 
Unlike other cytokines, IL9 is noted for its neuroprotective 
functions and support in repair mechanisms. Recent findings 
of reduced IL9 levels in PD patients suggest a disruption 
in IL9 signaling, potentially affecting the neuroprotective 
capabilities in PD [115-117].

Thus, a specific inflammatory profile is evident in PD 
patients, characterized by reduced IL9 levels and increased 
CRP, MIP-1β, and TNF-α concentrations. This profile, 
along with its correlation with the disease’s clinical stage, 
underscores the role of peripheral inflammation in the 
progression of PD.
Viral infections

The potential link between PD and viral infections has been 
under investigation since the early 20th century, following 
the encephalitic lethargica outbreak. This condition, along 
with postencephalitic parkinsonism, emerged years after 
the influenza A virus pandemic. Initially, these diseases 
were not directly connected to PD, but similarities in brain 
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shift towards a Tc1/Th1-type immune response in PD, 
highlighted by an increased ratio of CD8+ Tc to CD4+ Th 
cells and a higher proportion of IFN-γ producing T cells 
compared to IL-4 producing T cells. This shift towards pro-
inflammatory Th1 cells over anti-inflammatory Th2 and 
Treg cells likely contributes to ongoing neuroinflammation 
and subsequent neuronal loss [154,155]. A case-control 
study was thus designed to explore the association between 
PD and T cell recognition of alpha-synuclein epitopes 
presented by specific MHC alleles. Sultzer et al. observed a 
T cell response primarily driven by IL-4 or IFNγ-producing 
CD4+ T cells, with a possible role for CD8+/IFNγ producing 
T cells, responding to alpha-synuclein epitopes in both its 
native extracellular and fibrillized forms [156].

Regarding B cell involvement, the evidence remains mixed. 
Some studies have reported a reduction in B lymphocyte 
populations, while others have found no changes in the 
peripheral blood of PD patients. Recent research focused 
on naturally occurring antibodies targeting Parkinson’s 
disease pathology. This study isolated memory B cells 
producing anti-alpha-synuclein antibodies and found 
that three of these antibodies were capable of inhibiting 
the seeding of intracellular alpha-synuclein aggregation, 
suggesting a protective role of IgGs in the pathogenesis of 
PD [157-159].
Gut-brain axis in PD

Discoveries of Lewy body formations in the intestines have 
prompted scientists to delve deeper into the potential gut-
brain link in PD patients. It is believed that environmental 
elements, such as the composition of the gut microbiome, 
may act as catalysts for the clumping of alpha-synuclein. 
This hypothesis gained support from experiments on 
genetically modified mice, which demonstrated that 
inducing high levels of human alpha-synuclein in these 
animals resulted in Parkinson’s-like symptoms and the 
accumulation of alpha-synuclein in both the gut and 
brain. Interestingly, when these mice were raised in sterile 
environments or treated with antibiotics that target a wide 
range of bacteria, they did not develop signs of Parkinson’s 
or show typical brain pathology [160-163].

The interaction between gut bacteria and brain microglia 
suggests that the makeup of gut bacteria could influence the 
progression of the disease and might correlate with specific 
symptoms. A notable study found a direct link between the 
increased presence of Enterobacteriaceae bacteria in the 
gut and more severe issues with balance and walking [164-
168].

Research comparing PD patients with healthy individuals 
has consistently shown ongoing inflammation in the 
intestines of those with PD. Initially, it was understood 
that this inflammation could activate the CNS through the 
vagus nerve. This connection led to research on patients 
who had undergone a vagotomy, a surgical procedure to 
remove part of the vagus nerve, to see if it impacted the 
likelihood of developing PD. Results from these studies 

a hallmark of the disease [136-138].

The phosphorylation, improper folding, and excessive 
buildup of α-synuclein are key factors in PD’s 
pathogenesis. Activated microglia engulf α-synuclein 
aggregates, triggering an immune response that leads 
to neurodegeneration. Numerous studies in animals and 
cell cultures have demonstrated that α-synuclein strongly 
activates microglia, causing inflammation. Specifically, 
injecting short α-synuclein fibrils leads to the production of 
chemokines, the activation of the Major Histocompatibility 
Complex II (MHCII) in microglia, and the attraction of 
peripheral macrophages and monocytes [139-141]. This 
activation of MHCII continues over time and can even 
spread to other brain areas, such as the striatum, six months 
post-injection. The activation of microglia and the ensuing 
immune response, which spreads throughout the brain 
alongside the α-synuclein inclusions, results in the loss 
of dopaminergic neurons. This underscores the role of the 
innate immune system in the progression of PD, particularly 
highlighting the early involvement of α-synuclein fibrils, 
making them potential biomarkers for detecting PD before 
clinical symptoms appear [142-144].

Additionally, a recent case-control study has identified 
α-synuclein-specific T cell responses as a promising 
indicator in the preclinical and initial stages of PD. These 
T cells were found before the clinical diagnosis of motor 
symptoms in PD and decreased in number afterwards. The 
presence of T cells reacting to α-synuclein-derived epitopes 
suggests an autoimmune aspect to PD. This specific T cell 
response not only correlates with the timing of diagnosis 
but also with the patient’s age and a lower dose of levodopa 
(less than 1000 mg/day) [145-147].

A different study assessed CSF alpha-synuclein levels 
using ELISA and discovered that average alpha-synuclein 
concentrations were notably lower in patients with 
PD, Multiple System Atrophy (MSA), and Lewy Body 
Dementia compared to patients with other neurological 
conditions. However, this approach lacked specificity, 
though it offered a high positive predictive value useful for 
patient stratification in upcoming clinical studies [148,149].

An innovative technique for identifying abnormal alpha-
synuclein is the Real-Time quaking-Induced Conversion 
(RT-QuIC) method. This process involves using aggregated 
alpha-synuclein to trigger further aggregation of soluble 
alpha-synuclein in a repetitive manner. Abnormal CSF 
alpha-synuclein levels were detected using RT-QuIC, 
achieving a sensitivity of 95% and a specificity of 100% 
[150-153].

The involvement of the adaptive immune system in 
the development of neurodegeneration in PD has been 
suggested as well. Studies in both humans and animals 
have demonstrated the infiltration of CD8+ and CD4+ 
T cells into the substantia nigra in individuals with PD. 
Specifically, research using a mouse model indicated a 
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patients compared to healthy individuals and those with 
other parkinsonian disorders. PD patients exhibited the 
lowest UCH-L1 concentrations in the CSF, suggesting 
its potential as a diagnostic marker for PD. Enhancing 
the biomarker’s specificity could involve measuring CSF 
levels of a-synuclein, given the strong positive correlation 
between the two proteins [186-188].

β-Glucocerebrosidase (GCase), a lysosomal enzyme 
encoded by the GBA1 gene, is crucial for the breakdown of 
α-synuclein. Mutations that reduce GCase’s function lead to 
Gaucher disease (GD), a rare, inherited lysosomal storage 
disorder. This connection between GD and parkinsonism 
emerged when it was observed that a number of individuals 
with Gaucher disease exhibited symptoms of PD, and PD 
was found to be more common in the relatives of those 
with GD. The pathway to synucleinopathies, diseases 
characterized by the accumulation of α-synuclein, is linked 
to these mutations in the GCase gene and changes in the 
metabolism of sphingolipids [189-193]. The reduction 
in GCase activity impairs the breakdown of proteins in 
lysosomes, elevates α-synuclein levels in neurons, and 
leads to neurotoxicity through the aggregation of these 
proteins. Both the malfunction of lysosomes and the 
accumulation of α-synuclein are believed to play roles 
in the development of PD. Research has shown that 
measuring both the ratio of oligomeric to total α-synuclein 
and the activity of β-Glucocerebrosidase could enhance the 
precision of PD diagnoses, underscoring the importance of 
utilizing a variety of biomarkers for early detection of the 
disease [194-196].

CCL28, also known as Mucosae-associated Epithelial 
Chemokine (MEC), is another biomarker significant for 
its role in detecting neuroinflammation and its diagnostic 
value for Parkinson’s disease. CCL28 is naturally produced 
in mucosal tissues and is found at moderate levels in the 
small intestine, kidneys, and brain, specifically within 
neurons rather than glial cells. It plays a dual role in the 
immune system: its C-terminus possesses antimicrobial 
properties, while its N-terminus is involved in the migration 
of lymphocytes [197-200]. In recent studies, CCL28 was 
identified as the sole biomarker elevated in PD patients 
compared to healthy controls. The increase in CCL28 levels 
in the CSF may suggest that viral and microbial infections, 
along with changes in the gut microbiota, could elevate the 
risk of developing PD or even act as early triggers for the 
disease. Additionally, the rise in CCL28 levels could be due 
to its release from deteriorating neurons [201-203].

Plasminogen Activators (PAs), a group of enzymes known 
for their role in preventing blood clots, have recently 
been explored as potential markers for inflammation in 
Parkinson’s disease. This group includes tissue Plasminogen 
Activator (tPA), urokinase Plasminogen Activator (uPA), 
and their natural inhibitor, PA Inhibitor-1 (PAI-1). PAs are 
crucial for axonal repair, remodeling of the extracellular 
matrix, breaking down fibrin, and supporting the migration 
and adaptability of neuronal cells. Notably, neurons 

suggest that those who had a complete vagotomy showed a 
potentially lower risk of developing Parkinson’s compared 
to those who had a more selective form of the surgery and 
the broader population [169-172].

The breach in the BBB appeared to facilitate the entry of 
peripheral proinflammatory factors and activated immune 
cells into the brain’s tissue. In more detail, researchers 
examined the mRNA expression levels of pro-inflammatory 
agents, including cytokines and glial markers, in colon 
biopsy samples from both PD patients and healthy controls. 
They observed a notable increase in the levels of TNF-α, 
IFN-γ, IL-6, and IL-1β in individuals with Parkinson’s 
compared to those without the disease. It appears that these 
activated immune cells play a role in disrupting the BBB 
and causing neuroinflammation. Similar observations were 
made in stool samples from PD patients, where there was 
an increase in proteins associated with angiogenesis and 
elevated levels of cytokines such as IL-1α, IL-1β, and IL-8 
[173-175].

In another study involving mice, the duodenal intestinal 
lining was injected with alpha-synuclein Preformed Fibrils 
(PFFs). The results showed that PFFs directly interfered 
with the connectivity of the Enteric Nervous System 
(ENS) and facilitated the progression of alpha-synuclein 
pathology to the brainstem. Notably, this process was more 
pronounced in older mice, which exhibited lower levels of 
striatal dopamine, indicating that age plays a crucial role in 
this mechanism [176-178].
Molecular biomarkers, therapeutic approaches, and 
neuroinflammation 

Over the last ten years, the quest to identify biomarkers 
for early detection and risk assessment in PD has 
been a significant challenge for researchers. PD is 
characterized by its complexity, encompassing various 
clinical manifestations and a broad spectrum of disease 
progression, necessitating a range of biomarkers including 
clinical, genetic, biochemical, and imaging markers. 
The exploration into neuroinflammation’s role in PD has 
yielded several potential biomarkers. Genetic variations in 
genes like LRRK2, S100B, and NURR1, which are linked to 
inflammation, have been shown to elevate PD risk. These 
findings suggest the potential of using the expression levels 
of inflammatory proteins in CSF as biomarkers for PD 
diagnosis or prognosis [179-181].

Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a 
deubiquitinating enzyme, plays a crucial role in brain 
protein metabolism by eliminating excess, oxidized, 
or improperly folded proteins in neurons, thereby 
preventing the accumulation of Lewy bodies within 
cells. Dysfunctional UCH-L1 activity leads to decreased 
breakdown of a-synuclein. A specific polymorphism 
(S18Y) in the UCH-L1 gene has been linked to a reduced 
risk of sporadic PD, providing an antioxidant protective 
effect [182-185]. Furthermore, research has shown a 
significant reduction in UCH-L1 levels in the CSF of PD 
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immunization involves generating antibodies against 
alpha-synuclein in an animal’s immune system, with the 
first vaccine developed producing high antibody titers 
against aggregated alpha-synuclein, successfully reducing 
its buildup and associated neural degeneration. Passive 
immunization involves administering antibodies that 
target various parts of alpha-synuclein, with the goal of 
promoting microglial activation, facilitating the removal of 
extracellular alpha-synuclein, and blocking its propagation 
from cell to cell [218-221].

Conclusion

In summary, the evolving understanding of Parkinson’s 
disease emphasizes the critical role of neuroinflammation 
in its pathogenesis and progression. The intricate interplay 
between the immune system and neurodegeneration reveals 
how both innate and adaptive immune responses contribute 
to neuronal damage through chronic inflammation, altered 
immune cell function, and the pathological effects of 
α-synuclein. This review highlights the importance of 
recognizing inflammation not only as a consequence 
of neuronal loss but as a pivotal player in the disease’s 
development.

The potential for early detection through inflammatory 
biomarkers underscores the need for further research into 
the specific molecular pathways involved. Understanding 
these pathways could pave the way for novel therapeutic 
strategies aimed at modulating the immune response, 
thus slowing or even reversing disease progression. The 
exploration of immunotherapeutic approaches targeting 
α-synuclein demonstrates an exciting frontier in PD 
management, yet ongoing studies are essential to fully 
elucidate their effectiveness and safety.

As we advance our knowledge of the neuroimmune 
interactions in Parkinson’s disease, there is a critical 
opportunity to integrate this understanding into clinical 
practice. By targeting neuroinflammation, we can 
enhance diagnostic accuracy and develop more effective, 
personalized treatment options for patients, ultimately 
improving outcomes and quality of life. The journey 
towards unraveling the complexities of PD continues, 
with hope for innovative solutions that honor the dynamic 
relationship between the brain and the immune system.
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