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Abstract

Parkinson’s Disease (PD) is a complex neurodegenerative disorder
characterized by the progressive loss of dopaminergic neurons in the
nigrostriatal pathway, leading to both motor and non-motor symptoms.
Recent insights have expanded our understanding of PD beyond its
classical motor presentations, highlighting the significant role of
neuroinflammation in its pathogenesis and progression. This review
explores the multifaceted relationship between neuroinflammatory
processes, the immune response, and the onset of PD. It discusses the
involvement of both innate and adaptive immunity specifically the
activation of microglia and the role of T and B cells in the degeneration
of dopaminergic neurons. Additionally, we examine how genetic
predispositions, environmental factors, and viral infections may
contribute to inflammation and ultimately neurodegeneration. We delve
into the implications of chronic inflammation, emphasizing its potential
as a therapeutic target and a source of biomarkers for early diagnosis
and progression monitoring. Recent therapeutic approaches, including
immunotherapies targeting o-synuclein, present promising avenues for
intervention. Overall, this review underscores the intricate interplay
between neuroinflammation and the pathophysiology of Parkinson’s
disease, advocating for a deeper exploration of inflammatory pathways
as both contributors to and markers of disease progression.
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Introduction

PD is a prevalent neurodegenerative condition primarily
marked by a decline in motor functions, stemming from
damage to the dopaminergic nigrostriatal pathway. This
damage involves the death of dopamine-producing neurons
that extend from the substantia nigra pars compacta to
the striatum’s caudate-putamen, leading to a decrease in
dopamine neurotransmission. The main motor symptoms
include rest tremors, slowed movements (bradykinesia),

stiffness (rigidity), and balance issues (postural instability)
[1-3]. Initially, PD was identified solely as a movement
disorder without any cognitive decline, but it is now
recognized that PD’s progression also impacts other brain
pathways, leading to non-motor symptoms such as loss
of smell (anosmia), sleep disturbances, constipation, and
cognitive and emotional issues, including dementia and
depression [4,5].

The disease begins years before the first symptoms
manifest, but the exact cause of the neuronal death is still
not fully understood. Genetic factors account for 5%-
10% of PD cases, with mutations in specific genes (such
as PARK genes, alpha-Synuclein, DJ-1, PINK, LRRK?2)
leading to an early onset of the disease. However, the
majority of PD cases are idiopathic, with a link to aging
[6-10]. Environmental risk factors, including exposure to
toxins, pesticides, heavy metals, injuries, and infections,
have been associated with PD, particularly through
their role in promoting inflammation. The connection
between inflammation and Parkinsonian symptoms has
been explored since the observation of Parkinson-like
symptoms in individuals with influenza virus infections
(encephalitis lethargica) [11-13]. Subsequent research
has linked PD onset to various viral pathogens, including
influenza A, Herpes Simplex Virus-1 (HSV-1), Ebola virus,
and others, suggesting that these pathogens may reach the
brain through the nasal or intestinal pathways, triggering
neuroinflammatory and neurodegenerative processes in the
nigrostriatal pathway [14-16].

Interestingly, some viral proteins, such as those from HSV-
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1 and EBYV, can mimic alpha-Synuclein (a-Syn), leading to
its aggregation and the formation of Lewy bodies, which
are characteristic of PD. Additionally, a-Syn plays a role
in attracting immune cells like neutrophils and monocytes
in response to viral infections, indicating its involvement
in both systemic and brain inflammatory responses in PD’s
development [17-21].

Inflammation serves as a critical defense mechanism against
harmful pathogens or injury, designed to shield the body
from harmful agents and aid in tissue healing. Traditionally,
the Central Nervous System (CNS) was viewed as immune-
privileged due to the Blood-Brain Barrier (BBB) isolating
it from the body’s general immune system. However, this
view has evolved.

The CNS can indeed mount a strong innate immune
response to Pathogen-Associated Molecular Patterns
(PAMPs) and Damage-Associated Molecular Patterns
(DAMPs) [22-24]. Normally, microglia and astroglia patrol
the brain’s environment to keep the CNS in balance by
releasing growth factors, clearing away excess glutamate,
and modifying synapses, among other tasks. Yet, these glial
cells can become activated by PAMPs and DAMPs, like
those from injured neurons or protein clumps, leading to
ongoing neuroinflammation. While not always the initial
cause, chronic neuroinflammation is increasingly seen as a
contributing factor in the progression of PD [25-29].

Further discussions and a wealth of data from human
studies and animal research highlight inflammation’s role
in PD’s onset. The precise catalyst for this inflammatory
response is still uncertain. It’s possible that inflammation
results from the continuous death of neuronal cells in PD,
but the misfolding of a-Synuclein could also have a direct
impact [30-33].

Beyond the significant microgliosis and astrogliosis
observed in PD-affected brains, peripheral inflammation
and genes linked to PD risk underscore the significant role
of chronic inflammation in the disease’s advancement. This
article will offer a comprehensive review of the cellular and
molecular players in neuroinflammation and their potential
effects on the progression of PD [34-38].

Inflammation in PD: Pathogenesis and progression

Age stands as the most significant risk factor for numerous
neurodegenerative diseases, yet the aging immune system’s
role is often overlooked and insufficiently researched in
the context of neurodegeneration. Immunosenescence,
the aging of the immune system, is marked by two main
aspects: An age-related decline in immune function and
inflammaging. Inflammaging refers to the chronic, low-
grade increase in circulating inflammatory mediators or
cytokines, particularly C-Reactive Protein (CRP), IL-6, and
Tumor Necrosis Factor (TNF), produced by persistently
activated immune cells. Both the innate and adaptive
branches of the immune system deteriorate with age and
exhibit notable changes in PD [39-42].

Innate immunity

Microglia are found in high numbers in the substantia nigra
pars compacta and striatum within the brain, both of which
are impacted by PD. An early indication of the connection
between neuroinflammation and PD’s development was
presented in 1988, when researchers discovered HLA-DR+
reactive microglia in the post-mortem brain tissue of PD
patients. The presence of HLA-DR+ microglia escalates
alongside neuronal degeneration in the nigrostriatal
pathway. These activated microglia contribute to increased
levels of TNF, IL-1B, TGFpB, IL-6, Reactive Oxygen
Species (ROS), nitric oxide species, and pro-apoptotic
proteins in the substantia nigra pars compacta, striatum,
and Cerebrospinal Fluid (CSF) of PD patients [43-45]. The
activity of microglia in living patients has been studied
using Positron Emission Tomography (PET) with specific
ligands to trace neuroinflammation in PD brains. Ligands
like 11C-PK11195, targeting the Translocator Protein
(TSPO), have indicated heightened microglial activity in
PD brains, although this activity does not directly correlate
with the clinical severity. This method has led researchers
to believe that microglia activation occurs early in PD,
contributing to neuroinflammation in areas prone to PD
[46-50]. However, the reliability and interpretation of
TSPO radioligand binding face challenges like TSPO
polymorphisms with second-generation ligands, low TSPO
density in healthy brains, and expression in multiple cell
types, including peripheral cells. Therefore, new targets are
needed for better specificity and understanding of microglia
function [51-53].

Traditionally, microglia in neurodegenerative regions were
labeled as ‘activated’ due to their ameboid shape, suggesting
a harmful inflammatory state. Yet, current evidence shows
that microglia exhibit a range of behaviors and play various
roles in PD’s pathology. For instance, microglia can
cause neuronal death by producing inflammatory factors,
interact with o-synuclein to promote its aggregation, or
alternatively, offer protection through the production of
neurotrophic factors [54-58]. Dysfunctional phagocytosis
in glial cells, resulting from PD-related genetic mutations,
may contribute to microgliosis and neuroinflammation.
Extracellular a-synuclein can activate microglia in a manner
dependent on its conformation and specific mutations, with
fibrils and mutations linked to early-onset PD eliciting
strong immune responses in BV2 microglial-like cells
[59,60]. The NLRP3 inflammasome signaling in microglia,
a complex involved in promoting an inflammatory state,
is activated by a-synuclein in PD models. Different
a-synuclein variants trigger specific NLRP3 inflammasome
responses in microglia, including a-synuclein breakdown,
highlighting its potential significance in PD [61-64].

Beyond microglia, monocytes also play a role in the
development of diseases. Specifically, within the monocyte
group, the proportion of classical CD14+CD16- monocytes
is higher in individuals with PD, and these cells exhibit
changes in their gene expression. One notable change is the
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increased expression of CC-chemokine Ligand 2 (CCL2),
indicating a rise in monocyte recruitment and inflammation
in PD patients [65-69]. Additionally, levels of Leucine-Rich
Repeat Kinase 2 (LRRK?2) are higher in monocytes from
PD patients, which is linked to abnormalities in monocyte
function. Early stages of the disease show unique monocyte
gene expression profiles, including genes related to immune
response such as HLA-DQB1, MYD8S, REL, and TNF. More
recent studies, including a transcriptome-wide association
study, have identified connections between genes related to
lysosomal functions and innate immune responses in the
dorsolateral prefrontal cortex and peripheral monocytes,
highlighting them as risk factors for PD [70-72].

Adaptive immunity

Substantial evidence points to the involvement of adaptive
immunity in the development of diseases. In an initial study
that discovered HLA-DR+ microglia in the brains of PD
patients, researchers found that CD3+ T cells were present
in the brains of these patients, a finding that has been
confirmed by further research and in animal studies. Later
research has delved into the specific types of T cells in the
brain and their peripheral counterparts to better understand
their contribution to the inflammatory processes linked to
PD. In the brains of PD patients, higher levels of CD4+ and
CD8+ T cells were observed in the substantia nigra pars
compacta compared to controls [73-76]. In the bloodstream,
numerous studies, including a meta-analysis involving 943
PD cases, have noted a decrease in circulating CD4+ T cells
among patients. More precisely, increases in HLA-DR+ T
cells and CD45RO+ memory T cells have been observed in
PD patients compared to healthy individuals, whereas naive
CD4+ T cells were found to be lower, and the frequency of
CD25+ regulatory T (Treg) cells has shown inconsistent
results. In PD patients, CD4+FOXP3+ Treg cells exhibit
heightened suppressive capabilities. This is in line with the
discovery that dopamine, which PD patients lack, reduces
Treg cell functionality [77-80]. However, functional studies
have not shown a difference in T cell activity between
patients receiving dopamine-replacement therapy and those
who are not, indicating that dopaminergic medications
might not influence T cell behavior. Interestingly, the
severity of PD in patients has been linked to the expression
of specific dopamine receptors on T cell subsets, suggesting
a possible role for immune cell dopamine receptors in the
disease’s development or progression. The dysregulation
of T cells in PD is indicated by their increased expression
of TNF receptors and the elevated production of IFNy and
TNF by effector T cells, despite the presence of Treg cells
[81-84]. During a comprehensive study it was proposed that
in PD patients, certain T cell subsets, particularly CD4+
T cells, recognize specific a-synuclein peptides, further
underscoring the significance of adaptive immunity in PD
pathology. More recent research has linked a-synuclein
T cell reactivity in peripheral blood mononuclear cells
with preclinical and early motor stages of PD, suggesting
that tracking this could allow for earlier disease detection
in susceptible individuals [85-89]. Although there are

inconsistencies in the findings regarding T cell dysregulation
and their roles in PD pathology, some of this variation
might be attributed to the diverse nature of the studied
patient groups. Nonetheless, it is evident that disruptions in
immune cell movement can foster an inflammatory setting
conducive to the neuronal death seen in PD [90-93].

The understanding of B cells’ involvement in PD is still
developing, with ongoing research into their role. Studies
indicate a decrease in B cell numbers in the blood of PD
patients compared to healthy individuals, although these
results vary between studies. There have been discoveries
of IgG deposits on the brain’s dopaminergic neurons
and the presence of the IgG receptor FcyRI on activated
microglia, hinting at the involvement of humoral immunity
in neuroinflammation and neurodegeneration [94-97].
Furthermore, autoantibodies targeting a-synuclein,
dopamine, and melanin have been identified in the serum
and CSF of PD patients. The concentration of a-synuclein
autoantibodies in the CSF and plasma of patients with
mild or moderate PD has been linked to the severity of the
disease, suggesting these autoantibodies might be useful
as biomarkers for PD. Previous infections could trigger
the production of these autoantibodies through a process
known as molecular mimicry, as proposed for infections
like HSV1 and Helicobacter pylori [98,99].

Microglia activation

Microglia are the brain’s immune cells, playing roles in
both protecting and potentially harming the nervous system.
In a healthy state, these cells patrol the CNS, looking for
signs of danger while maintaining balance and releasing
growth-supporting factors like NGF and basic Fibroblast
Growth Factor (bFGF). They can be activated by a variety
of antigens, including infectious agents, foreign bodies,
prions, abnormal CNS proteins, aggregates, and dying
cells. Common triggers for microglia activation include
Interferon (IFN)-y, B-Amyloid (AP), lipopolysaccharide
(LPS), and a-synuclein, both in laboratory settings and in
living organisms [100-102].

Activated microglia have been implicated in the
neuroinflammation observed in PD, as evidenced by studies
in both tissue cultures and animal models. Autopsies of
PD patients have shown significant microglial activation,
particularly through the increased expression of HLA-
DR, a specific immune system receptor, in brain regions
most affected by the disease, such as the Substantia Nigra
pars compacta (SNpc). These HLA molecules, presented
by Dopamine (DA) neurons, display processed antigenic
peptides to CD4+ T lymphocytes [103-105]. While neurons
typically do not express MHC molecules, those in the
substantia nigra and Locus Coeruleus (LC) have been
found to do so following IFNy exposure. This, combined
with the BBB becoming permeable to CD4+ and CD8+ T
cells, might explain the pathological observations in PD
brains. Additionally, activated microglia release various
inflammatory mediators like TNFa, IL-6, NOS2, COX2,
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and ROS, which facilitate the presentation of new antigens
to CD4+ T cells through the MHC-II pathway, leading to
cell proliferation, gradual degeneration, and ultimately the
death of DA neurons [106,107]. This phenomenon has been
observed in rat models of PD and confirmed through PET
imaging in living PD patients. Thus, chronic activation
of microglia in PD may worsen the disease by producing
excessive pro-inflammatory and cytotoxic factors, which
could serve as potential biomarkers for early diagnosis
and monitoring of PD progression. Conversely, a recent
study in mice highlighted the protective role of microglia
in clearing a-synuclein released by neurons, underscoring
their complex role in the brain’s immune response [108-
110].

Specific cytokine signaling in PD

The involvement of cytokines such as IL-1a, IL2, IL-1,
TNF-a, IL-6, TGF-B, and IFNy in the deterioration of DA
neurons within the SNpc has been linked to microglia
activation. This activation leads to an increase in pro-
inflammatory cytokines, signaling an immune response to
DA neuron damage. Research analyzing CSF and blood
from patients with PD predominantly reveals higher levels
of IL-1P and IL-6 in serum and an increase in TGF-f§ in
CSF [111,112]. Additionally, a significant rise in IL-6
mRNA expression in the hippocampus of PD patients also
experiencing dementia was observed. In terms of TNF-a,
blocking soluble TNF signaling through the administration
of the recombinant dominant-negative TNF inhibitor
XENP345 resulted in the preservation of about 50% of DA
neurons in various animal studies [113,114].

IL9, another cytokine implicated in PD’s development,
serves both pro-inflammatory and regulatory roles, varying
by the context of induction and the cell type producing
it. It affects various cell types within the immune system
and the CNS, with Th9 cells/IL9 signaling linked to
neurodegeneration and autoimmune diseases of the CNS.
Unlike other cytokines, IL9 is noted for its neuroprotective
functions and support in repair mechanisms. Recent findings
of reduced IL9 levels in PD patients suggest a disruption
in IL9 signaling, potentially affecting the neuroprotective
capabilities in PD [115-117].

Thus, a specific inflammatory profile is evident in PD
patients, characterized by reduced IL9 levels and increased
CRP, MIP-1B, and TNF-o concentrations. This profile,
along with its correlation with the disease’s clinical stage,
underscores the role of peripheral inflammation in the
progression of PD.

Viral infections

The potential link between PD and viral infections has been
under investigation since the early 20th century, following
the encephalitic lethargica outbreak. This condition, along
with postencephalitic parkinsonism, emerged years after
the influenza A virus pandemic. Initially, these diseases
were not directly connected to PD, but similarities in brain

pathology, such as neurofibrillary tangles and the loss of
DA neurons in the substantia nigra, hinted at a possible
causative relationship, despite the absence of Lewy body
inclusions [118-120].

Animal studies, particularly with the HSN1 influenza virus,
have shown similar pathological outcomes. The spread
of HSN1 from the peripheral to the CNS triggers specific
immune responses leading to the degeneration of DA
neurons. Although this dopaminergic loss was temporary,
the resulting inflammation lasted much longer [121,122].

In studies involving the HIN1 virus, which does not
typically affect the nervous system in mice, an inflammatory
response begins in the body and then moves to the CNS,
leading to neurodegeneration and protein aggregation.
Further research using mice infected with HIN1 and treated
with MPTP, a neurotoxin, showed increased microglia
activation and subsequent degeneration. Importantly, this
study demonstrated that administering an HIN1 vaccine
or antiviral treatment could limit inflammation to the areas
affected by the MPTP, significantly reducing the impact of
HINI1 [123-127].

Research over the last ten years has explored how immune
responses to HSV-1 affect individuals with PD, particularly
looking at how prior infections influence PD progression.
Studies have shown that antigens from HSV-1 can activate
T-cells and B-cells that also respond to antigens from
a-synuclein. This suggests a potential molecular mimicry
between HSV-1 and a-synuclein in the dopamine-producing
neurons of the SNpc. Research into the immune response
has found that people with PD have higher levels of
antibodies against HSV-1 and against a-synuclein peptides
that resemble viral epitopes, compared to those without PD
[128-130].

Similarly, the relationship between Epstein-Barr Virus
(EBV)infectionand PD hasbeenexamined. Epidemiological
data indicate that people with PD are more likely to have
been infected with EBV than the general population.
Studies suggest a molecular mimicry mechanism here as
well, with antibodies against EBV’s Latent Membrane
Protein 1 (LMP1) in genetically susceptible individuals
also reacting with a similar epitope on a-synuclein, leading
to its oligomerization. Neurohistological examinations
have found immunoglobulins close to dopamine-producing
neurons in the brains of PD patients, hinting at interactions
between microglia and B lymphocytes [131-135].

Autoimmunity and the role of A-Synuclein

Alpha-synuclein aggregates primarily accumulate in
the SNpc in PD, but they are also present in neurons
across the CNS, the Peripheral Nervous System (PNS),
sympathetic ganglia, and the intestinal myenteric plexus.
Furthermore, mutations in the SNCA gene, which encodes
for a-synuclein, are linked to hereditary forms of PD. Lewy
bodies, which are highly structured a-synuclein aggregates
that also contain ubiquitin and various cellular proteins, are
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a hallmark of the disease [136-138].

The phosphorylation, improper folding, and excessive
buildup of a-synuclein are key factors in PD’s
pathogenesis. Activated microglia engulf o-synuclein
aggregates, triggering an immune response that leads
to neurodegeneration. Numerous studies in animals and
cell cultures have demonstrated that a-synuclein strongly
activates microglia, causing inflammation. Specifically,
injecting short a-synuclein fibrils leads to the production of
chemokines, the activation of the Major Histocompatibility
Complex II (MHCII) in microglia, and the attraction of
peripheral macrophages and monocytes [139-141]. This
activation of MHCII continues over time and can even
spread to other brain areas, such as the striatum, six months
post-injection. The activation of microglia and the ensuing
immune response, which spreads throughout the brain
alongside the a-synuclein inclusions, results in the loss
of dopaminergic neurons. This underscores the role of the
innate immune system in the progression of PD, particularly
highlighting the early involvement of a-synuclein fibrils,
making them potential biomarkers for detecting PD before
clinical symptoms appear [142-144].

Additionally, a recent case-control study has identified
a-synuclein-specific T cell responses as a promising
indicator in the preclinical and initial stages of PD. These
T cells were found before the clinical diagnosis of motor
symptoms in PD and decreased in number afterwards. The
presence of T cells reacting to a-synuclein-derived epitopes
suggests an autoimmune aspect to PD. This specific T cell
response not only correlates with the timing of diagnosis
but also with the patient’s age and a lower dose of levodopa
(less than 1000 mg/day) [145-147].

A different study assessed CSF alpha-synuclein levels
using ELISA and discovered that average alpha-synuclein
concentrations were notably lower in patients with
PD, Multiple System Atrophy (MSA), and Lewy Body
Dementia compared to patients with other neurological
conditions. However, this approach lacked specificity,
though it offered a high positive predictive value useful for
patient stratification in upcoming clinical studies [148,149].

An innovative technique for identifying abnormal alpha-
synuclein is the Real-Time quaking-Induced Conversion
(RT-QuIC) method. This process involves using aggregated
alpha-synuclein to trigger further aggregation of soluble
alpha-synuclein in a repetitive manner. Abnormal CSF
alpha-synuclein levels were detected using RT-QulC,
achieving a sensitivity of 95% and a specificity of 100%
[150-153].

The involvement of the adaptive immune system in
the development of neurodegeneration in PD has been
suggested as well. Studies in both humans and animals
have demonstrated the infiltration of CD8+ and CD4+
T cells into the substantia nigra in individuals with PD.
Specifically, research using a mouse model indicated a

shift towards a Tcl/Thl-type immune response in PD,
highlighted by an increased ratio of CD8+ Tc to CD4+ Th
cells and a higher proportion of IFN-y producing T cells
compared to IL-4 producing T cells. This shift towards pro-
inflammatory Thl cells over anti-inflammatory Th2 and
Treg cells likely contributes to ongoing neuroinflammation
and subsequent neuronal loss [154,155]. A case-control
study was thus designed to explore the association between
PD and T cell recognition of alpha-synuclein epitopes
presented by specific MHC alleles. Sultzer et al. observed a
T cell response primarily driven by IL-4 or IFNy-producing
CD4+ T cells, with a possible role for CD8+/IFNy producing
T cells, responding to alpha-synuclein epitopes in both its
native extracellular and fibrillized forms [156].

Regarding B cell involvement, the evidence remains mixed.
Some studies have reported a reduction in B lymphocyte
populations, while others have found no changes in the
peripheral blood of PD patients. Recent research focused
on naturally occurring antibodies targeting Parkinson’s
disease pathology. This study isolated memory B cells
producing anti-alpha-synuclein antibodies and found
that three of these antibodies were capable of inhibiting
the seeding of intracellular alpha-synuclein aggregation,
suggesting a protective role of IgGs in the pathogenesis of
PD [157-159].

Gut-brain axis in PD

Discoveries of Lewy body formations in the intestines have
prompted scientists to delve deeper into the potential gut-
brain link in PD patients. It is believed that environmental
elements, such as the composition of the gut microbiome,
may act as catalysts for the clumping of alpha-synuclein.
This hypothesis gained support from experiments on
genetically modified mice, which demonstrated that
inducing high levels of human alpha-synuclein in these
animals resulted in Parkinson’s-like symptoms and the
accumulation of alpha-synuclein in both the gut and
brain. Interestingly, when these mice were raised in sterile
environments or treated with antibiotics that target a wide
range of bacteria, they did not develop signs of Parkinson’s
or show typical brain pathology [160-163].

The interaction between gut bacteria and brain microglia
suggests that the makeup of gut bacteria could influence the
progression of the disease and might correlate with specific
symptoms. A notable study found a direct link between the
increased presence of Enterobacteriaceae bacteria in the
gut and more severe issues with balance and walking [164-
168].

Research comparing PD patients with healthy individuals
has consistently shown ongoing inflammation in the
intestines of those with PD. Initially, it was understood
that this inflammation could activate the CNS through the
vagus nerve. This connection led to research on patients
who had undergone a vagotomy, a surgical procedure to
remove part of the vagus nerve, to see if it impacted the
likelihood of developing PD. Results from these studies
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suggest that those who had a complete vagotomy showed a
potentially lower risk of developing Parkinson’s compared
to those who had a more selective form of the surgery and
the broader population [169-172].

The breach in the BBB appeared to facilitate the entry of
peripheral proinflammatory factors and activated immune
cells into the brain’s tissue. In more detail, researchers
examined the mRNA expression levels of pro-inflammatory
agents, including cytokines and glial markers, in colon
biopsy samples from both PD patients and healthy controls.
They observed a notable increase in the levels of TNF-a,
IFN-y, IL-6, and IL-1f in individuals with Parkinson’s
compared to those without the disease. It appears that these
activated immune cells play a role in disrupting the BBB
and causing neuroinflammation. Similar observations were
made in stool samples from PD patients, where there was
an increase in proteins associated with angiogenesis and
elevated levels of cytokines such as IL-1a, IL-1p, and IL-8
[173-175].

In another study involving mice, the duodenal intestinal
lining was injected with alpha-synuclein Preformed Fibrils
(PFFs). The results showed that PFFs directly interfered
with the connectivity of the Enteric Nervous System
(ENS) and facilitated the progression of alpha-synuclein
pathology to the brainstem. Notably, this process was more
pronounced in older mice, which exhibited lower levels of
striatal dopamine, indicating that age plays a crucial role in
this mechanism [176-178].

Molecular biomarkers, therapeutic approaches, and
neuroinflammation

Over the last ten years, the quest to identify biomarkers
for ecarly detection and risk assessment in PD has
been a significant challenge for researchers. PD is
characterized by its complexity, encompassing various
clinical manifestations and a broad spectrum of disease
progression, necessitating a range of biomarkers including
clinical, genetic, biochemical, and imaging markers.
The exploration into neuroinflammation’s role in PD has
yielded several potential biomarkers. Genetic variations in
genes like LRRK?2, S100B, and NURR1, which are linked to
inflammation, have been shown to elevate PD risk. These
findings suggest the potential of using the expression levels
of inflammatory proteins in CSF as biomarkers for PD
diagnosis or prognosis [179-181].

Ubiquitin ~ C-terminal  hydrolase-L1 (UCH-L1), a
deubiquitinating enzyme, plays a crucial role in brain
protein metabolism by eliminating excess, oxidized,
or improperly folded proteins in neurons, thereby
preventing the accumulation of Lewy bodies within
cells. Dysfunctional UCH-L1 activity leads to decreased
breakdown of a-synuclein. A specific polymorphism
(S18Y) in the UCH-LI gene has been linked to a reduced
risk of sporadic PD, providing an antioxidant protective
effect [182-185]. Furthermore, research has shown a
significant reduction in UCH-LI levels in the CSF of PD

patients compared to healthy individuals and those with
other parkinsonian disorders. PD patients exhibited the
lowest UCH-L1 concentrations in the CSF, suggesting
its potential as a diagnostic marker for PD. Enhancing
the biomarker’s specificity could involve measuring CSF
levels of a-synuclein, given the strong positive correlation
between the two proteins [186-188].

B-Glucocerebrosidase (GCase), a lysosomal enzyme
encoded by the GBAI gene, is crucial for the breakdown of
a-synuclein. Mutations that reduce GCase’s function lead to
Gaucher disease (GD), a rare, inherited lysosomal storage
disorder. This connection between GD and parkinsonism
emerged when it was observed that a number of individuals
with Gaucher disease exhibited symptoms of PD, and PD
was found to be more common in the relatives of those
with GD. The pathway to synucleinopathies, diseases
characterized by the accumulation of a-synuclein, is linked
to these mutations in the GCase gene and changes in the
metabolism of sphingolipids [189-193]. The reduction
in GCase activity impairs the breakdown of proteins in
lysosomes, elevates a-synuclein levels in neurons, and
leads to neurotoxicity through the aggregation of these
proteins. Both the malfunction of lysosomes and the
accumulation of o-synuclein are believed to play roles
in the development of PD. Research has shown that
measuring both the ratio of oligomeric to total a-synuclein
and the activity of B-Glucocerebrosidase could enhance the
precision of PD diagnoses, underscoring the importance of
utilizing a variety of biomarkers for early detection of the
disease [194-196].

CCL28, also known as Mucosae-associated Epithelial
Chemokine (MEC), is another biomarker significant for
its role in detecting neuroinflammation and its diagnostic
value for Parkinson’s disease. CCL28 is naturally produced
in mucosal tissues and is found at moderate levels in the
small intestine, kidneys, and brain, specifically within
neurons rather than glial cells. It plays a dual role in the
immune system: its C-terminus possesses antimicrobial
properties, while its N-terminus is involved in the migration
of lymphocytes [197-200]. In recent studies, CCL28 was
identified as the sole biomarker elevated in PD patients
compared to healthy controls. The increase in CCL28 levels
in the CSF may suggest that viral and microbial infections,
along with changes in the gut microbiota, could elevate the
risk of developing PD or even act as early triggers for the
disease. Additionally, the rise in CCL28 levels could be due
to its release from deteriorating neurons [201-203].

Plasminogen Activators (PAs), a group of enzymes known
for their role in preventing blood clots, have recently
been explored as potential markers for inflammation in
Parkinson’s disease. This group includes tissue Plasminogen
Activator (tPA), urokinase Plasminogen Activator (uPA),
and their natural inhibitor, PA Inhibitor-1 (PAI-1). PAs are
crucial for axonal repair, remodeling of the extracellular
matrix, breaking down fibrin, and supporting the migration
and adaptability of neuronal cells. Notably, neurons
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release PAs to activate the production of pro-inflammatory
cytokines by microglia, which in turn can release PAs as
well. Thus, the expression of plasminogen activators could
be a promising and accurate marker for inflammation in
the central nervous system, as suggested by recent research
[204-206].

Mitochondrial dysfunction is known to both cause and
result from neuroinflammation and neurodegeneration.
Fibroblast Growth Factor 21 (FGF21), which is involved
in various metabolic processes, has also been linked to
mitochondrial issues within neurons. When mitochondrial
function is compromised, neurons initiate a comprehensive
stress response that leads to the release of FGF21. This
response has been observed in the brains of mice with
tauopathy and prion disease, suggesting FGF21’s role as a
mitokine and its potential as an indicator of mitochondrial
dysfunction in the brain [207-209].

The wundeniable influence of neuroinflammation on
the development and progression of PD highlights the
urgent need for therapeutic interventions derived from
this in-depth research. Initially, research on animals
and experimental studies indicated that Non-Steroidal
Anti-Inflammatory Drugs (NSAIDs) like ibuprofen and
piroxicam could potentially lower the risk of PD. However,
further investigations through epidemiological studies and
meta-analyses did not support the notion that NSAIDs
could decrease PD risk or alter its progression [210,211].

Another area of interest has been anti-TNF therapies, based
on their in vitro effects. TNF is known to significantly
harm dopaminergic neurons in laboratory settings, and the
application of general TNF inhibitors, such as thalidomide,
has shown promise in certain animal models, including
MPTP-treated mice and LPS-treated rats. An observational
study also noted a reduced PD incidence among
inflammatory bowel disease patients who were receiving
anti-TNF treatments compared to those who were not [212-
214].

Research into Isobavachalcone, a key compound in
the Chinese herbal medicine Psoralea corylifolia, has
demonstrated its potential as both a neuroprotective and
immunomodulatory agent in mouse models. It appears to
work by inhibiting NF-xB signaling, which in turn helps
improve motor function, reduce neuronal death, and lower
levels of inflammatory markers like IL-6 and IL-1 [215-
217].

In recent developments within immunomodulatory
treatments, various immunotherapies targeting alpha-
synuclein have been explored as a means to extract this
protein from the extracellular space, aiming to diminish
its accumulation in the brain. This approach mirrors
similar strategies in Alzheimer’s disease research, where
immunotherapies focus on amyloid beta and, more recently,
the tau protein. The strategies against alpha-synuclein
include both active and passive immunotherapies. Active

immunization involves generating antibodies against
alpha-synuclein in an animal’s immune system, with the
first vaccine developed producing high antibody titers
against aggregated alpha-synuclein, successfully reducing
its buildup and associated neural degeneration. Passive
immunization involves administering antibodies that
target various parts of alpha-synuclein, with the goal of
promoting microglial activation, facilitating the removal of
extracellular alpha-synuclein, and blocking its propagation
from cell to cell [218-221].

Conclusion

In summary, the evolving understanding of Parkinson’s
disease emphasizes the critical role of neuroinflammation
in its pathogenesis and progression. The intricate interplay
between the immune system and neurodegeneration reveals
how both innate and adaptive immune responses contribute
to neuronal damage through chronic inflammation, altered
immune cell function, and the pathological effects of
a-synuclein. This review highlights the importance of
recognizing inflammation not only as a consequence
of neuronal loss but as a pivotal player in the disease’s
development.

The potential for early detection through inflammatory
biomarkers underscores the need for further research into
the specific molecular pathways involved. Understanding
these pathways could pave the way for novel therapeutic
strategies aimed at modulating the immune response,
thus slowing or even reversing disease progression. The
exploration of immunotherapeutic approaches targeting
a-synuclein demonstrates an exciting frontier in PD
management, yet ongoing studies are essential to fully
elucidate their effectiveness and safety.

As we advance our knowledge of the neuroimmune
interactions in Parkinson’s disease, there is a critical
opportunity to integrate this understanding into clinical
practice. By targeting neuroinflammation, we can
enhance diagnostic accuracy and develop more effective,
personalized treatment options for patients, ultimately
improving outcomes and quality of life. The journey
towards unraveling the complexities of PD continues,
with hope for innovative solutions that honor the dynamic
relationship between the brain and the immune system.
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