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Abstract

Drugs and alcohol have dual roles in society, offering therapeutic val-
ue yet causing harm. Detection methods span environmental and bio-
medical fields, employing electrochemical sensors and aptamer-based 
technologies. These systems provide sensitive, selective monitoring of 
analytes, advancing public health efforts through real-time assessment of 
substance presence in diverse settings.
Keywords: Drug; Electrochemical technologies; Central nervous 
system

Introduction

The use of plant derived medicines has been around for 
centuries [1,2], and ever since then, humanity has had a 
long and complicated history with drugs and alcohol. On 
the one hand, there are drugs which are extremely benefi-
cial to humanity such as polyenes for anti-fungal treatments 
[3,4] and plant derived phenolic compounds as antioxidants 
[5,6], but there are also some which cause great harm to 
people and wider society such as opioids [7,8]. But to com-
plicate matters further, there are drugs to counteract the 
drugs (such as methadone, buprenorphine, and naloxone), 
which can be used to treat opioid overdose or opioid intox-
ication [9-12]. Thus, it would seem society has categorised 
drugs as either “good” or “bad” depending on their physio-
logical effects on humans. The “illicit” drugs are typically 
used recreationally and can damage the Central Nervous 
System (CNS) which often leads to various health prob-
lems [13,14]. However, society’s values can change over 
time. This is evidenced by the fact that in 1898 “heroin” 
was a constituent of some cough medicines [15,16].

The same level of apparent ambiguity and selectivity of so-
cial acceptability is also true of alcohols. For example, there 
is “rubbing alcohol” (concentrated propan-2-ol) which is 
widely available and used as a disinfectant in many clinical 
settings and households within the UK; but there is also eth-
anol in most alcoholic beverages, which is one of the main 
causes of intoxication within people and animals and the 

subsequent “hangovers” that people experience. Although, 
it must be mentioned that in many parts of the world (and 
in many religions), anything containing alcohol is banned 
entirely (whether propan-2-ol, ethanol or any other hydro-
carbon containing the alcohol chemical functional group).

Drug and alcohol detection can be broadly broken down 
into two categories, in vivo detection within organisms (hu-
mans, bacteria etc.) and detection within the environment. 
Here, we will consider the technologies commonly used for 
either scenario and briefly discuss their principle working 
mechanisms and the scientific theories that underpin them.
Drug and alcohol detection in the environment

The detection of drugs and alcohol within the environment 
often involves having to take samples from numerous dif-
ferent sample sites to get enough reliable data to form an 
accurate idea of the analyte distribution within the target 
area and any long-term or short-term trends for the pres-
ence of the analytes of interest. There are many different 
methods of detection to choose from, depending upon fac-
tors such as speed, accuracy, and portability. Examples in-
clude portable ethanol sensors for breath analysis by the 
police [17-20], and electrochemical detection of cocaine 
within wastewater [21,22]. There are also electrochemical 
methods of detecting various alcohol vapours [23,24]. Such 
electrochemical sensors have been widely studied for years 
[25,26], and are so ubiquitous that they merit further expla-
nation within this manuscript.
Drug and alcohol detection in the body

The detection of drugs and alcohol within people has been 
an area of active research for decades, although Therapeu-
tic Drug Monitoring (TPM) is generally considered unnec-
essary for many commonly used medications [27]. Exam-
ples include therapeutic drug monitoring via concentration 
levels in the blood [28-31] and drug monitoring in urine 
[32,33]. Electrochemical aptamer based (EAB) sensors 
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have been used for decades to detect a wide range of bio-
logical targets [34-37], and are a promising area of research 
for in situ monitoring within the body [38,39].
Principles of electrochemical sensing

All electrochemical sensors work on the fundamental prin-
ciple of electrochemical reactions at the Working Electrode 
(WE) surface to cause the transfer of electrons into or out of 
the working electrode, which is then registered as a current 
flowing through the electrical circuit system. This current 
can provide quantitative data as it is typically proportional 
to the amount of analyte reacting at the working electrode 
surface [40,41]. The reactions at the working electrode can 
be broadly classed as either chemisorption, oxidation, or re-
duction. In most standard sensor designs, the analyte must 
physically move from the inlet (or aperture) at one end of 
the sensor, to the other end where the WE surface is locat-
ed. This means passing through several different mediums 
such as a semi-permeable membrane, a liquid electrolyte, 
and finally interacting with the working electrode surface 
(Figure 1). Whilst the analyte interaction with the WE 
surface is typically the focus during electrochemical sens-
ing, other aspects such as the diffusion rate of the analyte 
through the different mediums, and the physical length of 
the different sensor layers can be used to give useful ana-
lytical data [42,43].

Figure 1: Example analyte travelling through a typical electrochemical 
sensor.

Electrochemical Aptamer Based Sensors (EABs) 

Having already discussed the working mechanisms of elec-
trochemical sensors in general, now we turn our attention 
specifically to EABs. Aptamers are short, single stranded 
nucleic acid sequences which are typically derived from 
either DNA or RNA. They can exhibit high selectivity for 
binding to the target analyte and can be chemically mod-
ified to improve their performance [44,45]. Selection of 
aptamers is often via an in vitro procedure called SELEX 
(Systematic Evolution of Ligands by Exponential Enrich-
ment) [46-49], which can search through a library of hun-
dreds of different possible options. There are lots of dif-
ferent available aptamers which have been studied in the 
literature, designed to detect things such as cancer, macular 
degeneration, and carotid artery disease [50-53]. One of the 
most common target analytes for EABs is thrombin [54-57] 
(which is an enzyme involved in the blood clotting cascade 
by converting fibrinogen into fibrin). Aptamers are typi-
cally immobilised via thiol functional groups linked to the 

gold (Au) electrode surface which acts as the WE [58,59]. 
An example of the thiol binding at the gold Working Elec-
trode (WE) surface is shown for clarity (Figure 2).

Figure 2: Aptamer binding via thiol at the gold Working Electrode 
(WE) surface.

Conclusion

The principle working methods for electrochemical detec-
tion have been briefly discussed, and their use for detection 
of drugs and alcohol both in the environment and within the 
body has been shown to be an active area of research. The 
electrochemical sensor technology for analyte detection is 
generally well understood and has been covered in depth 
within the literature previously.
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